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The well established macroscopic-microscopic (mac-mic) description of nuclear fission enables
the prediction of fission fragment yields for a broad range of fissioning systems. In this work,
we present several key enhancements to this approach. We improve upon the microscopic sector
of nuclear potential energy surfaces by magnifying the Lipkin-Nogami equations’ resolution and
strengthening the Strutinsky procedure, thus reducing spurious effects from the continuum. We
further present a novel deterministic method for calculating fission dynamics under the assumption
of strongly damped nucleonic motion. Our technique utilizes the memoryless property of Markov
Chains to produce fission yields that do not rely on the statistical accumulation of scission events.
We show that our new technique is equivalent to the Metropolis random-walk pioneered over the
past decade by Randrup and colleagues. It further improves upon it, as we remove the need for
altering the nuclear landscape via a biased potential. With our final improvement, we calculate
scission configurations using particle number projection, which affords the simultaneous calculation
of both mass and charge yield distributions. Fission fragments are thus calculated from the quantum
mechanical A-body states of the potential energy surface rather than the collective mass asymmetry
variable (αg) of the Finite-Range Liquid-Drop Model (FRLDM) used in past work. We highlight
the success of our enhancements by predicting the odd-even staggering and the charge polarization
for the neutron-induced fission of 233U and 235U.
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I. INTRODUCTION

The complexity of nuclear fission makes this reaction challenging to model theoretically from fundamental principles.
Fission data, especially those based on fragment yields, are a key ingredient in many applications. For instance, the
accurate description of fission yields is influential for nuclear engineering and waste management [1, 2], the production
of radioactive isotopes via fragmentation [3–7], reactor neutrinos [8, 9], and in the pursuit of synthesizing superheavy
elements [10–13]. Fission may also play an important role in the formation of the heavy elements in astrophysical
processes [14–19].

There are many approaches to the theoretical description of fission. Fully microscopic models describe the fission
process by assuming the nuclear interaction between the nucleons only. The most frequently used implementation
is the Energy Density Functional (EDF) theory, where the density-dependence of the energy is derived from an
effective interaction or directly parameterized. A quantum state is then extracted using a time-dependent mean-field
approximation, such as the Time-Dependent Hartree-Fock method (TDHF), with the possibility to include dissipative
effects [20–28] or through the resolution of the Schrödinger equation in a collective space defined with a reduced number
of collective degrees of freedom (TDGCM), mainly the quadrupole and octupole multipolar moments [29–36]. The
latter type of microscopic calculation can describe the fissioning system’s deformations before scission only recently
due to lengthy computational costs. Statistical methodologies also provide a practical path to obtain a description of
fission and further enable large-scale calculations [37–39].

Approaching the description of fission observables from macroscopic-microscopic theory provides yet another al-
ternative. In this approach, the fissioning system is modeled to first approximation as a macroscopic system (e.g.,
a liquid-drop or a droplet of nuclear matter) to obtain the smooth part of its energy [40, 41]. Corrections are then
applied that account for the missing microscopic effects that may contribute to rapid variations in energy [42–44].
The time-evolution of the fissioning system is then obtained statistically with the exact or approximate resolution of
the Langevin equations [45–47]. Approximate methods that assume strong damping are modeled via a random walk
on the potential energy surface and are found to produce a good agreement with known data [48, 49].

The benefit of such semi-classical approaches over the microscopic approaches applied to the description of fission
is the inclusion of larger spaces for the collective shape degrees of freedom and the ability to model stochastic
dynamics, whilst retaining reasonable calculation times. Thus, such models are applicable to a range of reactions
across many heavy fissioning systems [50]. To date, these approaches have examined several starting configurations
for the dynamics, including from the ground state, inner saddle region, and after the last saddle [47, 50]. Those
studies which start after the last saddle explicitly ignore dynamics before this point, potentially neglecting important
pathways. Studies that start at the ground state may introduce a phenomenological tilting of the potential energy
surface in an attempt to force the calculation to go over the fission barrier sufficiently quickly. The downside to the
tilting is that it may introduce an unphysical bias to the results. Finally, the scission configurations of past work,
e.g., [48], may be calculated with reference only to the collective asymmetry coordinate (αg), thereby limiting the
predictive power of the approach.

In this work, we address several of the major shortcomings of past macroscopic-microscopic fission studies to describe
the nascent fission fragment yields. In Sec. II A, we outline the calculation of the potential energy surface, which has
been improved by using an enhanced Strutinsky method that drastically reduces the continuum effects and allows
the use of higher-quality particle basis. We present a new deterministic method to approximate fission dynamics in
Sec. II B and show that it has the capacity to reproduce the results of past random-walk methods. Our new method
has comparable calculation time while avoiding the use of biasing the potential energy surface. Further, we improve
the estimation of the fission fragment mass and charge probability distribution based on a microscopic projection
technique [51, 52]. In Sec. III, we present the results we have obtained with our approach.

II. THEORETICAL APPROACH

Our description of the fission process can be decomposed into three main steps. First, the shape-dependent potential
energy surface (PES) of the corresponding fissioning system (typically target-plus-neutron) is determined using a semi-
classical method based on the macroscopic Finite-Range Liquid-Drop Model (FRLDM) with microscopic corrections.
An effective ground state and barrier height are then extracted from the PES, as presented in Sec. II A. In Sec. II B, we
discuss our new Random-Walk-based algorithm used to obtain the probability to populate each scission configuration
of the PES. Finally, in Sec. II C, we present how we can deduce, for the first time in this type of approach, the fission
fragment probability distribution in charge and mass, Y (Z,A), based on a microscopic projection technique.
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A. Potential energy landscape

Several parameterizations of the sharp macroscopic density have been developed, see e.g., Ref. [53], to specify
the relevant degrees of freedom associated with large deformations encountered in fission. In this work, we restrict
ourselves to the description of binary fission. Even though there is experimental evidence for ternary [54–57] and
even quaternary [58] fission, their contribution to the fragment probability distribution is smaller than binary fission
by orders of magnitude. Thus, we use the so-called Matched-Quadratic-Surface (MQS) parameterization that was
introduced in Refs. [59–62] for the specification of our shape families. The MQS parameterization contains nine
degrees of freedom. Six degrees of freedom remain by ensuring a smooth junction between the bodies. Because one of
the parameters corresponds to the center of mass, this may be set to the origin, reducing the number of parameters
to five. We use the symbol q to denote a specific MQS shape. The lattice we use to calculate the PES is taken from
Ref. [63]. We note that the nodes associated with αg = −0.02 are redundant due to parity-reversal symmetry, and
therefore are not explicitly calculated.

For a nuclear system defined by Z protons, and N neutrons, the potential energy E(q) associated with a given set
of MQS parameters can be written as

E(q) = Emac(q) + ∆Eshell(q) + ∆Epair.(q), (1)

where Emac(q) is the macroscopic energy, and the remaining terms define the microscopic corrections. It is obtained
assuming that the fissioning system is a nuclear drop of charged liquid. Implicitly, these terms also depend on Z and
N as discussed in greater detail in Appendix A.

In order to obtain the sharp contribution to the energy from shell effects, we determine a microscopic many-body
state at the mean-field approximation. The effective averaged potential for the isospin τ is

V (τ)(q) = V
(τ)
1 (q) + V

(τ)
C (q) + V (τ)

s.o. (q), (2)

where each term is taken from Ref. [62]. The first term, V
(τ)
1 , corresponds to the parameterized mean-field associated

with the central part of the nuclear interaction and is obtained assuming a Yukawa interaction between the nucleons,

V
(τ)
1 (r; q) = − Vτ

4πa3
pot

∫
V

dr′
e−|r−r

′|/apot

|r − r′|/apot
, (3)

where V is the shape associated with the MQS parameters, q, scaled to have fixed volume, 4
3πAR

3
pot (Rpot is defined

by Eq. (81) of Ref. [64]). The potential depths Vτ are given by

Vn = Vs + Vaδ̄ (4)

Vp = Vs − Vaδ̄, (5)

where Vs and Va are parameters of the model and δ̄ is given by Eq. (85) of Ref. [64]. The Coulomb term V
(τ)
C (r; q) is

only acting on protons and given by

V
(p)
C (r; q) =

e2Z
4
3πAr

2
0

∫
V

dr

|r − r′|
. (6)

The spin-orbit term has the expression

V (τ)
s.o. = λτ

(
~2

2mnucc

)2 ∇V (τ)
1 σ × p
~

(7)

where the interaction strength λτ is taken for each isospin τ as a linear function of the mass A [64] such that

λτ = kτA+ lτ , (8)

and kτ and lτ are parameters.
Assuming that the particles of the compound system are independent, the many-body state can, therefore, be

obtained as a Slater determinant of particles, the state of each particle being an eigenfunction of the Hamiltonian
associated with the energy ei of the particle. Differentiating ourselves from past FRLDM work, the shell correction
is calculated independently for each isospin by using the improved Strutinsky method presented in Ref. [65, 66].
This procedure removes spurious contribution from the continuum, which happens when the number of shells in
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the Harmonic Oscillator basis, N0, is set too large, thus causing divergences in the calculation of the energy. The
avoidance of such spurious contributions is the reason why the size of the particle basis was limited to N0 = 12 in
past work. In this work, we use N0 = 20, which is sufficiently larger than N0 = 12 while remaining computationally
manageable. We have tested our Strutinksy procedure up to N0 = 30 and found no anomalies.

Pairing correlations are obtained using the Lipkin-Nogami approach with the seniority-pairing approximation on
the Slater-determinant of particles used to estimate shell effects [67, 68]. The relevant equations read

Npair = Lmin +

Lmax∑
k=Lmin

v2
k (9)

2

G
=

Lmax∑
k=Lmin

1√
(εk − λ)2 + ∆2

(10)

v2
k =

1

2

[
1− εk − λ√

(εk − λ)2 + ∆2

]
(11)

εk = ek + (4λ2 −G)v2
k (12)

λ2 =
G

4



Lmax∑
k=Lmin

u3
kvk

Lmax∑
l=Lmin
l 6=k

ulv
3
l

Lmax∑
k=Lmin

u2
kv

2
k

Lmax∑
l=Lmin
l 6=k

u2
l v

2
l


. (13)

This is a nonlinear system of 2Nv + 3 equations, where Nv = Lmax − Lmin + 1 is the number of pairs in the valence
space. The unknowns of this systems are the pairing gap ∆, the Fermi energy λ, the number-fluctuation constant
λ2 and for k = Lmin . . . Lmax, vk are the occupation amplitudes and εk are the shifted single-particle energies. This
system of equations is completely determined by the single-particle energies ek, the number of paired levels Npair, the
first and last levels 0 ≤ Lmin ≤ Lmax in the valence space and the seniority-pairing strength, G. The latter is obtained
using a method based on Ref. [69]. Specifically, to obtain an expression for G, we assume that the spacing between
the energy levels is constant

εk − λ̃ =
k −Npair

ρ̃
. (14)

In this expression, λ̃ is the smooth Fermi energy of the smoothed single-particle energy and g̃ is the smooth level
density obtained with the Strutinsky method. The pairing gap ∆ in (11) is approximated by an effective pairing gap

∆̄ =

{
rmicBs

N1/3 for neutrons
rmicBs

Z1/3 for protons
. (15)

We then substitute the sum of (11) by an integral

Lmax∑
k=Lmin

f(εk − λ) ≈ ρ̃
∫ y2

y1

f(x) dx (16)

to obtain the following expression for G

G =
2

ρ̃

[
arsinh

(y2

∆̄

)
− arsinh

(y1

∆̄

)]−1

, (17)

where

y1 =
Lmin −Npair − 1

2

ρ̃
(18)

y2 =
Lmax −Npair + 1

2

ρ̃
. (19)
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Note that these expressions differ from the one obtained in [41, 64], being shifted by 1/(2ρ̃). The expression of the

average pairing correlation plus quasi-particle energy Ẽp.c. is then obtained by inserting these quantities into Eq. (110)
of Ref. [64].

We solve the Lipkin-Nogami equations (9)-(13) using a new method based on the analytical calculation of the full
Lipkin-Nogami Jacobian and the action of its inverse on any vector coupled with a fifth-order numerical scheme. We
set multiple starting points to avoid local minima and find that our method greatly enhances the success rate of the
resolution of the Lipkin-Nogami equations. Thus, the time required to solve the Lipkin-Nogami equations using our
method is faster than in older work. This means the calculation time for our procedure is now negligible compared
to the calculation and diagonalization time of the Hamiltonian, thus allowing for larger shape families or potential
energy surfaces to be explored in the future. This new method is described in detail in Appendix B.

B. Novel approach to strongly damped nuclear motion

Many different methods have been developed to calculate nascent fission fragment yields. Most of these methods
seek to simplify the time-evolution of the complex nuclear motion subject to various assumptions, see Ref. [50]
for a recent overview. One of the most successful methods pursued over the past ten years is the assumption of
strongly damped nuclear dynamics in which the Smoluchowski equations reduce to a Metropolis random walk (RW)
[48, 70]. This method has been used in a large range of fission reactions using Markov Chain Monte Carlo (MCMC)
sampling [49, 50, 71–73]. The primary drawback to this method is the long calculation time required for near-barrier
fission. In what follows, we briefly review the construction of the finite-temperature PES and the MCMC sampling
method. We then present our new Deterministic-Probabilistic Algorithm (DPA) for attaining scission configurations
under the assumption of strongly damped motion.

The finite-temperature potential energy U(q) for each points of the PES is obtained through the insertion of a
suppression factor S[E∗(q)] in Eq. (1),

U(q) = Emac(q) + S[E∗(q)]∆Es+p(q) (20)

∆Es+p(q) = ∆Eshell(q) + ∆Epair.(q) (21)

S[E∗] =
1 + exp(−E1/E0)

1 + exp((E∗ − E1)/E0)
, (22)

where E∗(q) = E∗−E(q) is the local excitation energy as in Ref. [49]. A discrete or continuous Random-Walk (RW)
is then used on the finite-temperature PES U(q) to ascertain the scission configurations for the given incident energy,
E∗.

The MCMC RW procedure is illustrated in Fig. 1a. A single step can be decomposed as follows:

1. start at an initial point q0 (state P0);

2. randomly choose one of its D neighbors qk (k = 1, . . . , D) using a uniform distribution (transition from P0 to
one of the Ik);

3. if

(a) U(qk) ≤ U(q0), then,

Pacc.
0�k = 1 Prej.

0�k = 0 (23)

where Pacc.
0�k is the acceptance probability and Prej.

0�k is the rejection probability. We accept qk as a the next
point (transition from state Ik to another state Pk);

(b) U(qk) > U(q0), then, we sample a random variable r ∼ U([0, 1]). If r < Prej.
0�k = 1− Pacc.

0�k, where

Pacc.
0�k = exp

(
−U(qk)− U(q0)

T

)
, (24)

then go back to q0 (transition from Ik to P0). Otherwise, accept qk as the next point (transition from Ik
to Pk).

Results using this approach are always obtained through the generation of paths by explicitly repeating these steps
from an initial point up to reaching a scission shape. A scission shape is defined such that the radius of its neck, if
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P0

PD

ID

P2

I2

P1

I1

(a) Graph of the Markov-Chain transitions associated with
the Random-Walk method.

P0

PDP2P1

(b) Loop-less graph of the Markov Chain transitions of the
Markov-Chain associated with the Random-Walk method.

present, is lower than a given parameter rneck. Many paths have to be calculated to reduce the statistical uncertainty
and obtain a reasonable estimation of the probability density function (PDF) for the scission configurations.

We propose here to directly determine the evolution of the PDF according to the number of steps in a path.
This transformation is analogous to the determination of the Fokker-Plank equations associated with the Langevin
equations. The first step is to unravel the loops P0 � Ik � P0 appearing in Fig. 1a. This can be visualized by the
transition graph of Fig. 1b.

The probabilities P0�k to reach Pk from P0 is the sum of the probabilities of all possible paths between P0 and Pk.
Such a path can be decomposed into two parts: the first one is the self-looping from P0 to P0 and the second one
is P0 � Ik � Pk and corresponds to the last two transitions of the path. Using the Markov property of memoryless
transitions, the probability P0�k to reach Pk from P0 through any path can be decomposed as the product of the
probability C to reach P0 starting from P0 which is independent of k and the probability to reach Pk from P0 without
going around any loop

P0�k = C × Pacc.
0�k
D

. (25)

and D is the enumeration of states directly connected with P0. Using again the memoryless transitions property, it
can be shown that the probability to reach P0 after 2N iterations is

P(2N)
0�0 =

[
D∑
k=1

Prej.
0�k
D

]N
, (26)

which goes to zero as N goes to infinity. Therefore, we have

D∑
k=1

P0�k = C ×
D∑
k=1

Pacc.
0�k
D

= 1 . (27)

This relation enables the calculation of C without resorting to its definition as an infinite sum to obtain

C =
D∑D

k=1 Pacc.
0�k

, (28)
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leading to

P0�k =
Pacc.

0�k∑D
k=1 Pacc.

0�k

. (29)

Note that these formulas can also be derived by directly using the definition of C

C ≡
∞∑
N=0

P(2N)
0�0 =

1∑D
k=1

Pacc.
0�k

D

, (30)

where Eq. (26), the Taylor series of the function x 7→ 1/(1−x) and the relation Prej.
0�k = 1−Pacc.

0�k have been used. The
corresponding transition probabilities from a point q0 to qk are thus proportional to Pacc.

0�k. Our derivation shows that
in the standard RW method, there exists a parameter that correspond to an energy threshold, ∆Uthresh. = 0 MeV, on
the energy difference, U(qk)− U(q0), below which a transition from Ik to Pk is certain to happen (with probability
1).

With the probability of an individual step well defined, we now seek to calculate the probability distribution after

a fixed number of RW steps. This quantity, p
(n+1)
R (qf), is defined as the probability distribution associated with the

random variable Rn+1 to reach a point, qf , after n+1 RW steps and can be obtained recursively from the distribution

p
(n)
R after n steps using

p
(n+1)
R (qf) =

∑
q

Pacc.
q�qf

p
(n)
R (q) . (31)

From this definition it is clear that the probability distribution after n steps is thus completely determined by the

choice of the initial probability distribution p
(0)
R .

Rather than using Eq. (31) to directly compute our scission PDF, we generalize our procedure by allowing a
distribution of ending configurations. This amounts to adding an absorption mechanism on top of the nuclear PES,
analogous to the idea introduced in Ref. [30]. At each step n of our calculation we add an absorption field A(q) such
that

ā
(n)
R (q) = ā

(n−1)
R +A(q)p

(n)
R (q) (32)

a
(n)
R (q) =

ā
(n)
R (q)∑

q′ ā
(n)
R (q′)

(33)

where q and q′ are two distinct shape configurations, ā
(n)
R is the probability to reach a given shape at a given iteration,

a
(n)
R (q) is the probability to reach a shape q after n iterations given that q is a scission shape. We let ā

(0)
R (q) = 0 and

the values of the absorption field 0 ≤ A(q) ≤ 1 correspond to the percentage of the probability distribution absorbed
after one step at q. The Eq. (31) is then replaced by

p
(n+1)
R (qf) =

∑
q

Pacc.
q�qf

p̄
(n)
R (q) . (34)

where the initial probability distribution at the next iteration p̄
(n)
R (q) is then taken to be

p̄
(n)
R (q) = (1−A(q))p

(n)
R (q) . (35)

In this first work, we set the absorption field, A(q), to 100% for scission configurations and zero otherwise. This allows
us to directly compare to previous work in the Section III. The absorption field can in principle be configured in any
number of ways, including a distribution for various neck sizes, instead of the implicitly assumed sharp function of
this work. We plan to study such possibilities in future work.

Our novel method also affords the calculation of a convergence criteria. We can use this quantity as an estimate
of the statistical uncertainty on calculated fission yields. To this end, we assume that the 1-distance (the distance

associated with the 1-norm ||.||1) between two distributions a
(n)
R and a

(n+j)
R , defined as

∆
(n)
(j) =

∑
q

∣∣∣a(n+j)
R (q)− a(n)

R (q)
∣∣∣ , (36)
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is an inverse-quadratic function

∆
(n)
(j) ≈

1

[c(j)n+ d(j)]2
, (37)

where j is an integer, c(j) and d(j) are two real parameters that are ultimately obtained using a fit procedure. The
validity of this assumption is discussed in III for j = 1000. The convergence error at a step n can be introduced as
the distance between the distribution at step n and the distribution at infinity

ε(n) = ∆
(n)
(∞). (38)

Using the subadditivity of the 1-distance (commonly referred as the triangle inequality), we can determine the con-
vergence criteria,

ε(n) ≤
∞∑
k=0

∆
(n+kj)
(j) . (39)

Inserting (37) into (39) gives

ε(n) ≤
∞∑
k=0

1

[(jc(j))k + (c(j)n+ d(j))]
2 . (40)

A closed form of the right-hand side of this expression can be obtained by resorting to the trigamma function defined
as

φ(1)(z) =
d2

dz2
ln Γ(z) , (41)

that satisfies

φ(1)(z) =

∞∑
k=0

1

(k + z)2
. (42)

Employing these properties of the trigamma function, we finally obtain

ε(n) ≤ ε(n,j)
eff. , (43)

where

ε
(n,j)
eff. =

1

[jc(j)]2
φ(1)

(
c(j)n+ d(j)

jc(j)

)
. (44)

We take ε
(n,j)
eff. as our convergence criteria as it is an upper limit on the error ε(n) after n iterations.

C. Mass and charge yields of fission fragments

Most of the current mac-mic models used to estimate the probability distribution associated with the fission fragment
properties before prompt emissions resort to obtaining the mass, Y (Af), or charge, Y (Zf), yields separately using the
relevant macroscopic shape parameter, e.g., the procedure of Ref. [72]. While this method has been highly successful,
see e.g. [48, 70], it does not provide a means to calculate the full fragment yield, Y (Zf , Af) or equivalently, Y (Zf , Nf).
In the past, the full mass and charge yields have obtained through the direct analysis of systematics on known
experimental data [74], thus with low predictive power albeit high-quality data, or using the Wahl systematics [75]
e.g., in Ref. [50], which introduces a free parameter σZ that controls the dispersion in charge of the isobaric yields,
and presumes the Unchanged Charge Distribution (UCD) assumption that relies on the ratio η ≡ Zf

Af
= Z

A . Another

method, presented in Ref. [76], aims at obtaining the full mass and charge yields but relies on the addition of a
sixth macroscopic shape parameter in the PES. Without adding specific parameters, none of these past approaches
can predict the fission fragments’ charge polarization, which is the experimentally observed deviation from the UCD
assumption.
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In the following, we construct an approach to predict the full probability distribution of the fission fragment
mass and charge Y (Zf , Af) directly from the quantum mechanical wavefunctions. As it will be shown in Sec. III A,
our projection technique is able to reproduce charge polarization and odd-even staggering in the fragments without
additional parameters.

We only consider here the nascent fragments in binary fission. Therefore, Y (Zf , Af) can be decomposed according
to the probability distribution, YL(Zf , Af), (normalized to 1) associated with the mass and charge of only the left
fragment,

Y (Zf , Af) = YL(Zf , Af) + YL(Z − Zf , A−Af) . (45)

The law of total probability enables the decomposition of the probability distribution of the number of particles in
the left fragment YL(Zf , Af) before prompt particle emission as follows,

YL(Zf , Af) =

∫
P ((Z,A)L = (Zf , Af) |R = q) aR(q)(∞) dq , (46)

where the integral iterates over all the scission shapes parameterized by q, a
(∞)
R (q) is the limit for n → ∞ of the

distributions introduced in Eq. (33) and P ((Z,A)L = (Zf , Af) |R = q) is the probability associated with a left fragment
of mass Af and charge Zf when the fissioning system is in the shape q. Note that to use the law of total probability,
we had to implicitly assume that there exists a set of random variables R0, . . . ,R∞, as in the previous section. It
is not always the case, such as in the Time-Dependent Generator Coordinate Method formalism [77]. In this case,
coupling terms have to be added in the decomposition of YL(Zf , Af).

The probability P ((Z,A)L = (Zf , Af) |R = q) is extracted from the microscopic state calculated to estimate the
shell+pairing correction for each coordinate q of the PES after projection on the good mass and charge of the total
fissioning system. Because all these states preserve the isospin, we can further decompose

P ((Z,A)L = (Zf , Af) |R = q) = P (NL = Nf |R = q)P (ZL = Zf |R = q) , (47)

where Nf is the number of neutrons in the left fragment. Both factors in the right-hand side of Eq. (47) are calculated
through the particle-number projection-based technique on the fragments mass and charge developed first in Ref. [51]
in the context of time-dependent mean-field calculations for transfer reactions. This technique was first applied to
fission in Ref. [78] and adapted to the case of static mean-field calculations in Ref. [52]. When applied to fission, this
technique gives the probabilities associated with the number of nascent fragment neutrons (X = N , Xf = Nf) and
protons (X = Z, Xf = Zf) using,

P (XL = Xf |R = q) =

〈
Φ(q)

∣∣P̂ (L)
Xf

P̂X
∣∣Φ(q)

〉〈
Φ(q)

∣∣P̂X ∣∣Φ(q)
〉 , (48)

or equivalently

P (XL = Xf |R = q) =

〈
Φ(q)

∣∣P̂ (L)
Xf

P̂
(R)
X

∣∣Φ(q)
〉〈

Φ(q)
∣∣P̂X ∣∣Φ(q)

〉 . (49)

A double projection is required, where P̂X=N,Z is the operator restoring the good number of particle in the total

system while P̂
(L)
Xf

is an operator projecting on Xf particles in the left fragment. The definition of the latter relies on
the position of the neck along the symmetry axis. We define this quantity, in the standard way, as the position of the
minimum of the local one-body density of the microscopic state in q between the two pre-fragments [34, 79, 80]. The
projection-based method to calculate the fragment distribution is already known to describe the odd-even staggering
of the charge distribution of the fragments in case of time-dependent mean-field methods [78] and is able to give
non-zero probability for the existence of fragments with odd-number of particles [52]. At first sight, it could seem to
be a paradox in the case of static mean-field calculations in the case of even-even systems since:

1. the state describing the fissioning system is time-even;

2. the operators P̂X and P̂
(L)
Xf

are time-even;

3. a state describing odd-number fragments cannot be time-even.
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However, this paradox is only apparent and can be solved by noticing that the projection operators are both acting on

the full X-body wavefunction (for each isospin). Even in the case where Xf is odd, the state P̂
(L)
Xf

P̂X |Φ(q)〉 contains
an even number of particles: Xf in the left fragment and X −Xf in the right one. It is thus time-even. It can easily
be seen from a simple example of a time-even state having only two particles

|Φ〉 = â†i â
†
ī
|0〉 , (50)

where â†i is the creation operator of a particle in state i, ī is the time-reveral state of i. Both states can be decomposed
in a similar way as in [51, 52] as

â†i = α
(L)
i â

(L)†
i + α

(R)
i â

(R)†
i (51)

â†
ī

= α
(L)?
i â

(L)†
ī

+ α
(R)?
i â

(R)†
ī

, (52)

where â
(L)†
k and â

(R)†
k are respectively the left and right parts of â†k for k = i, ī. The creation operators on the left

commute with the ones on the right due to the complete separation of their spatial domain, and each of them commute
with their time-reversal. Therefore, by injecting (51) and (52) into (50) and developing the resulting expression, we
obtain

|Φ〉 = α
(L)
i α

(L)?
i â

(L)†
i â

(L)†
ī
|0〉+ (

α
(L)
i α

(R)?
i â

(L)†
i â

(R)†
ī

+ α
(R)
i α

(L)?
i â

(R)†
i â

(L)†
ī

)
|0〉+

α
(R)
i α

(R)?
i â

(R)†
i â

(R)†
ī
|0〉 . (53)

The three terms are orthogonal to each other and are all time-even. The first one corresponds to a state with two
particles in the left side and zero in the right one, the second one corresponds to one particle on each side and the last
one corresponds to two particles in the right side and zero in the left one. Therefore, even though |Φ〉 is time-even

and P̂
(L)
1 is time-even, we have a non-zero probability to have odd-number fragments when the state i spreads on

both the left and right domains

P (XL = Xf) =

〈
Φ
∣∣P̂ (L)
Xf

∣∣Φ〉
〈Φ|Φ〉

= 2|α(L)
i α

(R)
i |

2. (54)

However, as shown and explained in Ref. [52] in the case of static time-even Bogoliubov states with an even-number
of particles, the probability associated with odd-number fragments collapse to zero as soon as the fragments are
separated enough and don’t interact anymore. This is a direct consequence of the finite-range character of the nuclear
interaction and the minimization of the energy: if two subsystems S1 and S2 of a system S do not interact with each
other, the energy of the total system is the sum of the energies of both subsystems and thus, the state that minimize
the energy of S is the product of the states minimizing each subsystems.

III. APPLICATION TO 233,235-U(N,F)

We illustrate our model improvements in what follows by showcasing the well-known neutron-induced fission of two
isotopes of Uranium, 233,235U(n,f). We also prove that our implementation can reproduce the results of the discrete
random-walk method used in past work.

In Refs. [41, 63, 64, 71–73, 81], the authors implemented shell-plus-pairing corrections through the resolution of the
Schrödinger equation using an Axial Harmonic Oscillator (AHO) basis with only Nsh = 12 shells. The limitation of
this previous approach artificially introduces spurious contributions of the continuum [66]. The use of the improved
Strutinsky method [65] allows us to remove these contributions and thus use instead Nsh = 20 shells without any
energy truncation. In addition, we optimize the oscillator scaling factor b0 and deformation q for each point of the
PES using a variational principle such that the mean-field-plus-pairing energy of the microscopic state is minimized.

The order of the Strutinsky method is p = 8, and the corresponding range is

γ = Csr
Ccur

A1/3
Bs, (55)

where the relative surface energy Bs(q) is the ratio of the nucleus surface at shape q with the surface of the same
nucleus at spherical shape. We have used the same parameters as in Ref. [64], listed in the following table.
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Parameter Value Unit
Csr 1.0 MeV
Ccur 41 MeV

TABLE I: Microscopic parameters associated with the Strutinsky correction.

The pairing correction is obtained using the Lipkin-Nogami method. We have solved the Lipkin-Nogami (LN) for
each point of the PES using a pairing window of ± 5 MeV around the Fermi surface. The only remaining parameter is
the LN effective-interaction pairing gap constant rmic = 3.2 MeV. The full LN equations are often numerically solved
by splitting them into two or more subsets of equations, solved separately at each iteration. It adds overhead in the
resolution time and can also lead to spurious divergences. Instead, we have developed a new method to solve these
equations. Our method is based on the iterative fifth-order method presented in Ref. [82] that only requires first-order
derivatives (i.e., the Jacobian matrix). The main steps of our method are presented in Appendix B.

The fragment probabilities at each q are calculated using Eq. (49). The double-projection on the numerator is
calculated using the Pfaffian technique presented in Refs. [83, 84]. The determination of the integrals over the gauge
angles are determined through a Fomenko discretization method [85]. For each scission shape, we find the optimal
number of integration point NFom. by assuming that the width of the fragment distribution associated with both
isospin is NFom.. We check if this assumption is correct by checking that

P (XL = Xf |R = q) < 1.0× 10−6 (56)

for all Xf = bXmean−NFom./2c+ ∆X and Xf = dXmean +NFom./2e−∆X for ∆X = 0, 1, 2 and both isospins. If it is
not the case, we add 10 integration points and test again our criteria up to finding the value of NFom. that satisfies
it, starting at NFom. = 30.

The PES at a given excitation energy is obtained through the finite temperature method of Ref. [49] where the
damping of the shell-plus-pairing correction as in Eq. (20) invokes the damping parameter S[E∗] defined in Eq. (22).
The two parameters we have taken to define the damping coefficient are E0 = 20 MeV and E1 = 15 MeV. The
excitation energy dependency of the temperature is taken at the Thomas-Fermi approximation to be

E∗(q) = aT (q)2, (57)

with the nuclear level density a = A/8. To obtain an implementation equivalent to the state-of-the-art random-walk,
we have set ∆Uthresh. = 0 MeV. Recall that this threshold does not directly appear in the standard formalism of
the random-walk and corresponds to the energy difference U(qk) − U(q0) between an initial point q0 and one of its
neighbor qk below which a transition from the states Ik to Pk is certain in the Markov Chain Fig. 1a. The potential
energy surface is calculated on a regular grid following the work of Ref. [63]. Two points q0 and q1 are neighbors if
all the integer coordinates on the lattice differ by at most one unit. Such a definition in five dimensions leads to a
maximum of 35 − 1 = 242 neighbors for each node of the grid.

Our initial distribution is chosen to be entirely on the lattice site that corresponds to the effective ground-state of
the PES. The determination of this point is obtained as follow:

1. we start at the origin of the lattice associated with the smallest elongation, a maximal neck radius, and spherical
left and right bodies of the same volume;

2. we iterate over the neighbors of the points, we select the neighbor that is associated with the lowest energy, and
we reiterate up to reaching a local minimum qloc;

3. we determine the minimum energy Esad. required to reach scission configurations from qloc;

4. we calculate the set C of all the configurations accessible from qloc with an energy lower than Esad., and define
the effective ground-state as the node qg.s. ∈ C associated with the lowest energy Eg.s..

By using this procedure, we also obtain the saddle energy Esad, as well as an effective barrier height EB = Esad−Eg.s..
A site of the lattice is a scission configuration if its corresponding sharp macroscopic density has a neck radius
rneck < rsciss.. We have calculated the fragment probability distribution for

rsciss = 1.75, 2.25, 2.75 fm (58)

and three different excitation energies E∗ such that

x = E∗ − EB = 0.1, 2.0, 4.0 MeV, (59)

for a total of nine fission calculations per nucleus.
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(a) Fragment charge yields obtained with our approach for
the reaction 233U(nth.,f) at x = 0.1 MeV with different neck
radii (top panel) and with rneck = 2.25 fm at different
excitation energies (bottom panel). Our results are compared
with experimental data with thermal incident neutron
energies (Eneut. = 0.0253 eV) from [86, 87].
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(b) Fragment charge yields obtained with our approach for
the reaction 235U(nth.,f) at x = 0.1 MeV with different neck
conditions (top panel) and with rneck = 2.25 fm at different
excitation energies (bottom panel). Our results are compared
with experimental data with thermal incident neutron
energies (Eneut. = 0.0253 eV) from [86, 87].

A. Results

We have used our approach to calculate the fission fragment charge and mass probability distribution before prompt
emission for the reactions 233U(n,f) and 235U(n,f). In Figs. 2a and 2b we highlight the charge yields of these reactions
respectively. The upper panels of Fig. 2a and Fig. 2b show an important variation of the yields according to the
definition of the scission line for both reactions. This behavior is due to the minimization of the energy to obtain
our microscopic states [52]. The lower panels of Fig. 2a and Fig. 2b exhibit very little variation of our charge yields
according to the excitation energy in the range 0.1−4.0 MeV above the fission barrier. At rneck = 2.25 fm, our charge
yields present a very good quantitative agreement with experimental data for nearly all proton numbers.

As previously mentioned, our approach enables the determination of the mass and charge yields Y (Z,A). Our
charge yields for different fixed fragment masses are presented in Fig. 3 for the reaction 233U(n,f) and 235U(n,f).
Our independent yields (solid orange lines) are obtained by assuming that the prompt neutron emission multiplicity
distribution, Pn, depends on the mass of the fragments only. To estimate it, we first fit the parameter p of the
probability mass function of the binomial random variable B(N = 5, p) on experimental data from Ref. [88] as
suggested in [89]. We then shift the distribution for each fragment mass such that the expected value is equal to
ν̄(A) from Refs. [90, 91] to obtain Pn(A). Finally, the pre-neutron yields are corrected according to Pn(A) to obtain
our estimation of independent yields. This method is easy to implement and fast, albeit simple; providing a means
for comparison with experimental independent yield data. The presented theoretical yields correspond to x = 0.1
MeV. We note that the difference between each isobaric charge yields at different excitation energy were too small to
distinguish them, and therefore were not included in these two figures.

Finally, Fig. 4 presents the full fragment mass and charge distribution we have obtained using our approach for the
reactions 233U(nth.,f) and 235U(nth.,f), where the neck condition is rneck = 2.25 fm. The main feature in these results
is the reproduction of the charge polarization of the fragments. To estimate the charge polarization of the fragments,
we have first calculated the average number of protons for each mass. Then, we have linearly fit it for the light- and
heavy-fragments on all masses associated with a probability greater than 1%. The result of the fit is the upper blue
lines for the light fragment and the lower ones for the heavy fragment. In each case, the expression of the linear curve
is

ZL
f = ηLA+ sL (60)

ZH
f = ηHA+ sH , (61)
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FIG. 3: Isobaric fragment charge yields (dashed blue lines) and the independent charge yields (solid orange lines),
after prompt neutron emission, obtained with our approach for the reactions 233U(nth.,f) (left panel) and
235U(nth.,f) (right panel) with a neck condition zneck = 2.25 fm and an excitation energy above the barrier of
x = 0.1 fm. Each curve is normalized at the fixed A to 100% and the fragment probability associated with each of
the masses is listed in parentheses. We compare our results with experimental independent yields (dashed black
curve) from Refs. [86, 87, 92].

where Z
L/H
f is the charge of the light/heavy fragment. Since we only consider binary fission, ηL = ηH ≡ η. If

the UCD assumption is satisfied (recall η = Z
A ) then η ≈ 0.3932 for the reaction 233U(n,f) and η ≈ 0.3898 for

235U(n,f). However, the values of sL and sH are equal only if the UCD assumption is correct and the mass and charge
distributions of the light- and heavy-fragments are aligned. Therefore, we introduce the quantity ∆Z = sL − sH ,
which measures the charge alignment and vanishes if the UCD is verified. The ∆Z values, along with the one of η,
sL and sH for each excitation energy x are reported in Table II for the reaction 233U(nth.,f) and Table II for the
reaction 235U(nth.,f). For these two reactions, our approach indicates the light and heavy fragments distributions are
misaligned by ∆Z > 3.5 charge units.

B. Validity of the convergence criteria

To analyze the convergence properties of our new algorithm, we calculate the probability distributions of the scission
configurations anS(q) for all steps, n ≤ nmax = 150, 000, for the reaction 233U(n,f). From this calculations, we can

233U(n,f) 235U(n,f)
x (MeV) η sL sH ∆Z η sL sH ∆Z

0.1 0.4338 -2.755 -6.763 4.007 0.4348 -3.312 -7.293 3.982
2.0 0.4299 -2.387 -6.216 3.829 0.4317 -3.015 -6.864 3.850
4.0 0.4230 -1.731 -5.240 3.509 0.4293 -2.788 -6.523 3.735

TABLE II: Characteristics of the charge alignment between the light- and heavy- fragment distributions for the
reactions 233U(n,f) and 235U(n,f) represented by the blue curves of Fig. 4. If the UCD is verified, η ≈ 0.3932 for
233U(n,f), η ≈ 0.3898 for 235U(n,f), and ∆Z = 0.
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FIG. 4: Fragment mass and charge yields, before prompt neutron emission, obtained with our approach for the
reactions 233U(nth.,f) (left panel) and 235U(nth.,f) (right panel) with a neck condition zneck = 2.25 fm. Each panel
shows the yield with different excitation energies above the barrier.

(a) Evolution of the scission probability according to the
number of DPS iterations for the reaction 233U(n,f).

(b) Inverse-square-root of the evolution of the distance
between successive probability distributions of the scission
configurations for the reaction 233U(n,f). To keep a readable
graph, we have displayed only one point over four. A linear
fit of the data is presented for comparison purposes.

extract the probability to reach scission after n iterations

Psciss.
n =

∑
q

ā
(n)
R (q) . (62)

The evolution of this quantity with increasing n is shown in Fig. 5a. As expected, the lower excitation energy (red
curve) is significantly below the run with higher excitation energy (green curve). For the same range of iterations,

the evolution of the inverse-square-root of ∆
(n)
(1000) is presented in Fig. 5b. Recall that ∆

(n)
j is the convergence error

given by Eq. (36).
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The inverse-quadratic regime for ∆
(n)
(1000) is reached around n ≈ 20, 000 iterations where the ratio of paths that are

reaching scission is 3.0 × 10−5% for x = 0.1 MeV and 9.6 × 10−2% for x = 2.0 MeV. In fact, the convergence seems
to be at least quadratic, meaning that our convergence criteria is overestimating the error.

To further validate our convergence criteria, ε
(n,1000)
eff. , we have estimated it through a fit on the data applicable in

the range of iterations n0, . . . , n1. We compare our convergence criteria against data through the calculation of the
relative error of the convergence criteria using j = 1000

Dn0,n1
=

[
ε

(n0,j)
eff.

∣∣∣n1

n0

− ε
(nmax+1,j)
eff.

∣∣∣n1

n0

]
−

nmax−n0
j∑

k=0

∆
(n0+jk)
(j)

ε
(n0,j)
eff.

∣∣∣n1

n0

− ε
(nmax+1,j)
eff.

∣∣∣n1

n0

, (63)

where ε
(n,j)
eff.

∣∣∣n1

n0

corresponds to the estimation of our convergence criteria using a fit between n0 and n1. The evolution

of Dn0,n1
according to the range used for the fit is presented Fig. 6 for which n0 > 5, 000 and n1 − n0 ≥ 5, 000. The

relative error Dn0,n1
associated with our convergence criteria between the iterations n0 and n1 is below 2% after only

10,000 iterations in both cases. Dn0,n1
is greater than 0 almost everywhere, which means that our criteria slightly

overestimates the convergence error.

FIG. 6: Relative error Dn0,n1
, defined by Eq. (63), between our convergence criteria and the exact convergence

error, for each interval n0, . . . , n1 of fitted data, for the reaction 233U(n,f) at an excitation energy above the barrier
of x = 0.1 MeV (left panel) and x = 2.0 MeV (right panel).

C. Comparison with the Metropolis implementation

We compare our new calculations to past work in order to show that we can reproduce these efforts within the
context of our more general methodology. We use the implementation of a discrete random walk (DRW) as in
Ref. [50] as the baseline FRLDM mass yield calculations. We perform these calculations for the reaction 233U(n,f) at
an excitation energy of x ≈ 4 MeV above the barrier; noting that this value takes into account differences between
the potential energy surface used in Ref. [50] and the potential energy surface of this work. The starting point of the
DRW calculation is the ground state as chosen by the procedure of Ref. [50]. The biased potential is set to zero in the
DRW calculation and we set the scission neck radius to be 2.25 fm. We accumulate 100,000 scission configurations
for this comparison. With these parameters, we have nearly identical inputs as our new results shown in Sec. III A.

While the older mass yields rely only on the mass asymmetry coordinate, αg, it is not sufficient to compare only this
variable at scission as there could be changes in the distribution of other coordinates. Figure 7a shows the distribution
of the scission configurations in the full collective coordinate lattice space, (i, j, k, l, n), between the standard random
walk method and the method presented in this work. Despite the differences of the two approaches, exceedingly good
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(a) Probability distributions to obtain a scission
configuration associated with each integer indices (i, j, k, l, n)
as defined in [63] estimated with state-of-the-art random walk
with the code DRW (blue) and with this work (orange).

(b) Absolute error between the probability distributions
presented in Fig. 7a.

agreement is found between the two algorithms. The absolute error between the two approaches is shown in Fig. 7b.
We find that the statistical nature of the DRW algorithm leads to a maximum of ∼ 2% error in the distribution of the
scission neck radius, while the statistical error in αg is the lowest of all the coordinates, on the order of .1%. These
two figures show that we are successfully able to reproduce past work with our new technique and that older works
indeed have quantitatively very good estimates of the mass yields within the context of FRLDM so long as a large
number of scission events are calculated.

IV. CONCLUSION

With this work, we have improved the quality and predictive power of the mac-mic method in several areas. First,
we have enhanced the quality of the nuclear PES by removing spurious continuum effects in our five-dimensional
finite-range model. Further, our new resolution procedure of the Lipkin-Nogami equations enables the description
of pairing effects with very high accuracy. Second, our new Deterministic-Probabilistic Algorithm (DPA) completely
removes statistical uncertainties when computing the fission fragment distribution of a particular nucleus. DPA enables
the starting point of our calculation to be located at the ground state (easily identifiable for all nuclei) without the
requirement of including a biased potential that artificially tilts the PES. We have defined a high-accuracy convergence
criterion associated with our algorithm that affords ability to monitor the error associated with the obtained results.
Last, but not least, we have generalized the particle number projection technique introduced for independent quasi-
particle states in Ref. [51, 78] and calculated scission configurations with it. This projection technique allows for the
calculation of the coupled fragment charge and mass yield, Y (Z,A). We refer to these improvements colloquially as
the ‘Enhanced Finite-Range Liquid-Drop Model’ or eFRLDM for short.

Our first eFRLDM results are presented for the pre-neutron fission fragments probability distributions of the
reactions 233,235U(n,f) at different excitation energies. Our method can reproduce the odd-even staggering in the
charge yields as well as the charge polarization of the fragments without any additional free parameters in the model.
We find that a charge misalignment exists between the light and heavy fragments for these two reactions on the order
of ∆Z > 3.5 charge units. Our results show a remarkable quantitative agreement with experimental data for charge
yields and isobaric charge yields. We further highlight the capacity to reproduce past work within the context of our
new methodology.

Looking forward, our description of the temperature dependence of the PES is treated from a macroscopic per-
spective in this work. Since microscopic effects are relevant, especially at low incident energies, it might change the
relative contribution of different saddles and impact our results. Also, in this work, we have focused primarily on
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pre-neutron fragments yields. However, due to the timescale of prompt particle emission, there is no such experimental
data to compare directly. Hence, we can only compare with post-neutron yields, which induces further assumptions
and models. A next step in this latter direction is therefore to pursue simulating the de-excitation of the nascent
fragments. Improvements can be made to the description of microscopic temperature dependence, for example, by
including finite-temperature effects directly into the microscopic states at each point of the PES, and this will assist
in addressing the excitation energy dependence of our yield predictions. Yet another planned improvement is to refit
the parameters of the model to account for the changes in the size of the basis and Strutinsky method.

The eFRLDM developed in this work is an ideal tool for large-scale precision calculations of fission fragment
distributions required to model a range of phenomena, especially in astrophysical scenarios where it is important to
obtain both charge and mass yields simultaneously to determine the relative abundances of lighter species. In addition
to upcoming model improvements, we plan to study the application of our yields in a series of future efforts.
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Appendix A: Finite-Range Liquid Drop Model (FRLDM)

We group here the main formulas and parameters that define our model that we use to calculate the nuclear
potential energy surface. The macroscopic liquid-drop energy for even-even nuclei is

Emac(q) = MHZ +MnN

− av(1− κvI
2)A

+ as(1− κsI
2)B1(q)A2/3

+ a0A
0BW(q)

+ c1
Z2

A1/3
B3(q)

− c4
Z4/3

A1/3

+ f(kfrp)
Z2

A
− ca(N − Z)

+W |I|BW(q)

− aelZ
2.39.

(A1)

In this expression, A, Z, N are respectively the number of nucleons, protons and neutrons and I is the relative neutron
excess,

I =
N − Z
A

. (A2)

We note the pairing term is zero for even-even nuclei, and thus does not appear in the formula.
We shift globally the energy the PES such that the energy of the spherical point is zero. In this case, only the

shape-dependent terms contribute to the PES. There are four such terms in our approach:



18

1. the surface energy, calculated assuming a finite-range Yukawa-plus-exponential nuclear interaction with no
folding [93],

2. the Coulomb term, defined with a Yukawa folding of the sharp macroscopic density [94],

3. the A0 energy from Ref. [41],

4. the Wigner term from Ref. [41].

By setting

σa =
|r − r′|

a
(A3)

and letting V represent the sharp-macroscopic density, the shape-dependent energies are the relative surface energy
associated with a Yukawa-plus-exponential finite-range two-body interaction,

B1(q) = − A−2/3

8π2r0
2a4

∫∫
V

[σa − 2]
e−σa

σa
dr dr′ , (A4)

the relative Coulomb energy of a folded-Yukawa macroscopic density,

B3(q) =
15A−5/3

32π2adenr0
5

∫∫
V

dr dr′

σaden

[
1−

(
1 +

σaden

2

)
e−σaden

]
, (A5)

and the shape-dependency of the A0 and Wigner terms is defined as

BW(q) =


(

1− S3

S1

)2

ad + 1 if there is a neck

1 otherwise.
(A6)

In the last expression, S1 is the area of the maximum cross section of the smaller one of the end bodies and S3 is the
area of the geometric shape q at the neck location. The definition of BW is slightly different than in Refs. [41, 50]
where the condition is only relative to the MQS parameter, σ2. However, σ2 < 0 does not imply the presence of a
neck, defined as the existence of a local minimum in the sharp macroscopic density along the z-axis. Defining l1, l2
and l3 as the respective centers of the left, middle and right bodies of the MQS shape, in the case where l2 ≤ l1 or
l3 ≤ l2, the shape cannot exhibit a neck whatever the sign of σ2. In this situation, BW defined as in older work is not
continuous at σ2 = 0. Our new definition prevents this situation.

The model parameters we have used for the calculation of the PES are often referred to as FRLDM2002 which
correspond to the model parameters introduced in Ref. [64] with additional corrections of Ref. [81]. We present here
only the parameters having an influence on the shape-dependent terms of the PES. The values of the fundamental
constants we have used are Table IV references the parameters associated with the macroscopic part of the energy,

Parameter Value Unit
e2 1.4399764 MeV fm

mamu 931.4943335 MeV/c2

mnuc 1.007970689 amu
mn 1.008664891 amu
mp 1.007276487 amu

TABLE III: Truncation of the fundamental constants.

taken from [64]. Table V reports the macroscopic parameters taken from [81].
The parameters associated with the potential V (r; q) defined in (2) are

Appendix B: Resolution of the Lipkin-Nogami equations

When using a seniority-pairing interaction, the Lipkin-Nogami equations associated with a valence space of Nv

energy levels are the set of 2Nv + 3 nonlinear equations (9)-(13) with the same number of unknowns vk, εk, ∆, λ
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Parameter Value Unit
r0 1.16 fm
a 0.68 fm
aden 0.70 fm
W 30.0 MeV

TABLE IV: Part of the macroscopic parameters used in our approach to describe the fission process from [64].

Parameter Value Unit
ad 0.9
as 21.33000 MeV
κs 2.378 MeV
a0 2.04000 MeV

TABLE V: Part of the macroscopic parameters used in our approach to describe the fission process from [81].

and λ2. Some of these equations are associated with high-derivatives. To reduce the amplitude and the number of
non-zeros derivatives, we substitute uk, vk and εk by the variable xk and θk according to

uk = cos(θi) (B1)

vk = sin(θi) (B2)

xk = εk − λ. (B3)

The Lipkin-Nogami equations can then be rewritten and reorganized as

F (p) = 0, (B4)

where, setting k̄ = k − Lmin,

F2Nv
(p) = Lmin −Npair +

Lmax∑
k=Lmin

sin2(θk) (B5)

F2Nv+2(p) =

[
Lmax∑
k=Lmin

1√
xk2 + ∆2

]
− 2

G
(B6)

F2k̄+1(p) =
1

2

[
1− xk√

xk2 + ∆2

]
− sin(θk)2 (B7)

F2k̄(p) = (4λ2 −G) sin(θk)2 + ek − xk − λ (B8)

F2Nv+1(p) = A(θ)λ2 −
G

4
B(θ), (B9)

where the notations

A(θ) =

[
Lmax∑
k=Lmin

cos(θk)2 sin(θk)2

]2

−
Lmax∑
k=Lmin

cos(θk)4 sin(θk)4 (B10)

B(θ) =

[
Lmax∑
k=Lmin

cos(θk)3 sin(θk)

]
×

[
Lmax∑
k=Lmin

cos(θk) sin(θk)3

]
−

Lmax∑
k=Lmin

cos(θk)4 sin(θk)4, (B11)

and

p =
(
θLmin , xLmin , . . . , θLmax , xLmax , λ, λ2,∆

)
. (B12)

The analysis of the dependencies of each equations leads to a maximum of 10Nv + 2 non-vanishing elements in the
Jacobian matrix JF (p). Also, JFp is block-arrowhead, which means that

JF =

(
A B
C D

)
, (B13)
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Parameter Value Unit
Vs 52.5 MeV
Va 48.7 MeV
Aden 0.82 fm
Bden 0.56 fm2

apot 0.8 fm
kp 0.025
lp 28.0
kn 0.01875
ln 31.5
a1 15.677 MeV
a2 22.00 MeV
J 35.0 MeV
L 99.0 MeV
Q 25.0 MeV
K 300.0 MeV

TABLE VI: Microscopic parameters associated with the potential (2).

where A is a block-diagonal matrix. In our case, the blocks of A are 2-dimensional matrices

Ak̄ =

(
∂F2k̄

∂θk

∂F2k̄

∂xk
∂F2k̄+1

∂θk

∂F2k̄+1

∂xk

)
. (B14)

The block-column matrix B and row-column matrix C are respectively associated with the following 2×3-dimensional
and 3×2-dimensional blocks

Bk̄ =

(
∂F2k̄

∂λ
∂F2k̄

∂λ2
0

0 0
∂F2k̄+1

∂∆

)
(B15)

Ck̄ =


∂F2Nv

∂θk
0

∂F2Nv+1

∂θk
0

0
∂F2Nv+2

∂xk

 , (B16)

In the following, we propose a method to solve the Lipkin-Nogami equations and more generally any system of
equations associated with a block-arrowhead Jacobian matrix at each point p based on generalizations of the iterative
Newton method. In our case, we use the cubic and the fifth-order iterative methods developed respectively by
Homeier [95] and by Sharma & Gupta [82]. The idea of these methods is to improve the convergence properties of
the Newton scheme by evaluating the Jacobian at different p. For example, in the Sharpa & Gupta scheme, one step
from iteration i to i+ 1 is

x(i) � p(i) − 1

2
JF (p(i))−1F (p(i)) (B17)

y(i) � p(i) − JF (x(i))−1F (p(i)) (B18)

p(k+1) � y(i) −
[
aJF (x(i))−1 + bJF (y(i))−1

]
F (y(i)), (B19)

where the fifth-order convergence is obtained when a = 2 and b = −1. The Newton scheme is recovered by doing only
the first step and p(i+1) � x(i), while the two first steps are present in the Homeier scheme and p(i+1) � y(i).

The blockwise inversion theorem gives the inverse of the Jacobian matrix as

JF (p)−1 =

(
A−1 + IM −IT−1

−M T−1

)
, (B20)

where

I = A−1B (B21)

T = D − CI (B22)

M = T−1CA−1. (B23)
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Note that it is assumed that A and T are invertible. when it is not the case, we slightly perturb the diagonal elements
of the non-invertible matrix. This method requires inversion of Nv 2-dimensional matrices Ak̄ and one 3-dimensional
matrix T . However, the procedure gives a dense matrix. Instead, we directly calculate the four vectors

a(i) = JF (p(i))−1F (p(i)) (B24)

b(i) = JF (x(i))−1F (p(i)) (B25)

c(i) = JF (x(i))−1F (y(i)) (B26)

d(i) = JF (y(i))−1F (y(i)), (B27)

such that

x(i) � p(i) − 1

2
a(i) (B28)

y(i) � p(i) − b(i) (B29)

p(k+1) � y(i) −
[
ac(i) + bd(i)

]
. (B30)

In the following, we note e = a(i), b(i), c(i) or d(i) and f = F (p(i)) or F (p(i)) according to the equation (B24)-(B27)
considered. By injecting (B20) in (B24)-(B27) we obtain

e0 = A−1f0 + IMf0 − IT−1f1 (B31)

e1 = −Mf0 + T−1f1, (B32)

where

e =

(
e0

e1

)
f =

(
f0

f1

)
, (B33)

and e0 and f0 are vectors of dimension 2Nv and e1 and f1 are vectors of dimension 3. The expression of e1 appears
in the expression of e0. Therefore, once e1 is obtained by using (B32), e0 can be obtained through the expression

e0 = A−1f0 − Ie1. (B34)

Lastly, we note our convergence criteria is set to εLN(p) < 10−10, where, using the aforementioned functions Fk,

εLN(p) = max
k
|Fk(p)| . (B35)
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