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Abstract. This work explores the construction of a fast emulator for the calculation

of the final pattern of nucleosynthesis in the rapid neutron capture process (the r-

process). An emulator is built using a feed-forward artificial neural network (ANN).

We train the ANN with nuclear data and relative abundance patterns. We take as

input the β-decay half-lives and the one-neutron separation energy of the nuclei in the

rare-earth region. The output is the final isotopic abundance pattern. In this work, we

focus on the nuclear data and abundance patterns in the rare-earth region to reduce

the dimension of the input and output space. We show that the ANN can capture the

effect of the changes in the nuclear physics inputs on the final r-process abundance

pattern in the adopted astrophysical conditions. We employ the deep ensemble method

to quantify the prediction uncertainty of the neutal network emulator. The emulator
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achieves a speed-up by a factor of about 20,000 in obtaining a final abundance pattern

in the rare-earth region. The emulator may be utilized in statistical analyses such as

uncertainty quantification, inverse problems, and sensitivity analysis.
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1. Introduction

In the studies of heavy element nucleosynthesis, especially the rapid neutron capture

process (r-process), it is widely recognized that the properties of atomic nuclei, e.g.

masses, shell structures, decay half-lives, and β-delayed neutron emission probabilities,

affect the prediction of the resulting abundance pattern [1, 2, 3].

A common method to investigate the impact of nuclear physics inputs on the

r-process abundance pattern is to run a large number of nuclear reaction network

calculations while varying the relevant inputs, e.g. β-decay half-lives (T1/2), neutron

separation energies (Sn), neutron capture rates, etc., following the design of the

numerical experiment [4, 5, 6, 7, 8, 9]. The resulting calculated abundance patterns

can then be used to obtain Monte Carlo estimates of the propagated uncertainty and

sensitivity of the varied inputs. While the nuclear reaction network calculations can be

run in parallel (in a so-called embarrassingly parallel scheme) for these purposes, the

computational cost will still be significant. If one hopes to include a large number of

inputs in the Monte Carlo studies, the required number of data points exponentially

grows due to “the curse of dimensionality”. In variance-based sensitivity analyses (e.g.,

Ref. [10]), the problem is even more challenging since a “sufficient” number of unique

data points is required for each of the input variables of interest, and it is difficult, if

not impossible, to know a priori how many data points are sufficient.

Another class of statistical analysis using nuclear reaction network calculations

is solving inverse problems, that is, to find the optimal values of the nuclear physics

inputs that best reproduce the observed solar r-process abundance pattern [11, 12]. In

these works, the Markov chain Monte Carlo (MCMC) method was used to minimize

the χ2 likelihood between the calculated and observed solar abundance patterns in the

rare-earth region, by adjusting the correction to the theoretical nuclear masses. While

MCMC is a powerful tool for solving inverse problems, the computational cost can

become prohibitively large. This is because a large number of samples have to be

generated by solving forward problems (in the current context, by performing nuclear

reaction network calculations) to explore the entire parameter space. The generation of

samples cannot be easily parallelized as a step in MCMC depends on the previous step.

Since a nuclear reaction network calculation typically takes at least a few minutes, it

could take an extremely long time before sufficient statistics are obtained. To mitigate

this problem, Refs. [11, 12] reduced the number of independent input variables by

parameterizing the correction to the mass surface to reproduce the detailed features

of the rare earth peak.

Another way to tackle the problem is to reduce the computational cost. This

can be achieved by creating an emulator, that is, modeling the response of the output

to the variation of the inputs. In this way, an expensive computer code is replaced

by a fast emulator. In nuclear physics, some of the common approaches for building

an emulator are to replace the original computer models with reduced-order models,

Gaussian processes (GPs), or neural networks [13, 14, 15, 16, 17, 18, 19, 20, 21].
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In this work, our aim is to model the map between nuclear-physics inputs to the

nuclear reaction network calculations and their output, i.e. calculated abundances.

Since both input and output are high-dimensional, we employ artificial neural networks

which can work well with large input and output dimensions [22]. We also introduce a

way to quantify the uncertainty associated with the emulator using a technique called

deep ensembles [23].

The organization of this paper is as follows. In Section 2, the relevant theoretical

background is introduced. In Section 3, we describe how the artificial neural network

emulator is constructed for nuclear reaction network calculations, and the results are

reported in Section 4. In Section 5, we use the emulator to propagate the uncertainty

of the nuclear physics input to the nucleosynthesis yields. Finally, conclusions are given

in Section 6.

2. Theoretical background

2.1. Nuclear Reaction Network Calculation

Nuclear reaction networks are often used to study the evolution of nuclear abundances

during an astrophysical event [24, 25, 26]. From the evolution of nuclear abundances,

it is also possible to compute the amount of energy released from nuclear decays and

reactions. The calculation of energy release is important for modeling the reheating of

the material and the kilonova lightcurves [27, 28, 29, 30, 31].

Detailed nucleosynthesis calculations require information on the temperature

and/or density of the astrophysical medium. This information can be obtained from

tracer particles in hydrodynamical simulations of astrophysical events of interest. Tracer

particles record the evolution of the positions and thermodynamic properties of the

astrophysical plasma. The temporal evolution of temperature and/or density of each

tracer particle is often referred to as an astrophysical trajectory. The composition of

nuclear species at the beginning of the astrophysical trajectory may be obtained from the

hydrodynamical simulation itself or by assuming nuclear statistical equilibrium (NSE)

at a sufficiently high temperature. The initial composition is then evolved through a

nuclear reaction network calculation along the astrophysical trajectory.

To obtain the evolution of nuclear abundances, astrophysical trajectories are divided

into small time steps and the following system of ordinary differential equations is solved

(integrated) for nuclear abundances at each time step:

dYi

dt
=

∑
j

N i
jλjYj +

∑
j,k

N i
j,k ρNA⟨j, k⟩YjYk

+
∑
j,k,l

N i
j,k,l ρ

2NA
2⟨j, k, l⟩YjYkYl, (1)

where Yi is the nuclear abundance of the nucleus i, defined so that
∑

i YiAi =
∑

i Xi = 1,

with Xi being the mass fraction of the nucleus i and Ai the respective mass number, and

ρ is the density of the astrophysical medium, which is obtained from hydrodynamical
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simulations. The factors N i
j , N i

j,k, and N i
j,k,l account for how many particles of nucleus i

are created or destroyed in the reaction, while correcting for over-counting due to having

the same nuclear species in a reaction. λi, NA⟨j, k⟩, and NA⟨j, k, l⟩ are the one-body

reaction or decay rate, two-body reaction rate between nuclei i and j, and three-body

reaction rate between nuclei j, k, and l. One-body reactions include nuclear decays and

reactions of nuclei with photons (photodissociation), electrons (electron capture), and

neutrinos. The one-body, two-body, and three-body reaction rates typically depend on

the temperature of the medium, which can be given by hydrodynamical simulations,

but it is also possible to compute the temperature at each time step using the density

and entropy of the system, assuming adiabatic or radiation dominated gas.

Performing a nuclear reaction network calculation and obtaining the final

abundance pattern according to the system of coupled ordinary differential equations

(ODEs) is an initial value problem with respect to the initial conditions. This system of

ODEs is considered stiff, since the decay and reaction rates vary drastically and there

the changes in abundance in each time step ranges over many orders of magnitude.

For a stiff system of ODE, the implicit Euler method is often used to obtain the

evolution of the abundances. For details of nuclear reaction network calculations, see

e.g. Refs. [24, 25, 26, 32].

In this work, we use an implementation of nuclear reaction network called PRISM

[26]. Although there exist several numerical softwares for abundance calculations,

PRISM offers a straightforward way to manage and manipulate the nuclear physics

data necessary for the calculation, which is ideal for this application. The baseline

nuclear data are identical to the ones used in Ref. [10], which mainly consists of nuclear

physics models developed at Los Alamos National Laboratory (LANL) [33, 34, 35].

As a result of a nuclear reaction network calculation, the temporal evolution of

nuclear abundances can be obtained. In the case of the r-process, thousands of nuclear

species – ranging from neutron to actinides and possibly beyond, are involved. It is

an extremely complex task to emulate the full time dependence of nuclear abundances

across the chart of nuclides. Therefore, in this work, we limit our focus to the nuclei in

the rare-earth region, whose mass numbers range from A = 150 to A = 180. We also

focus on emulating their localized effect on the final abundance patterns. The observed

abundance pattern of the rare-earth nuclei is known as the rare-earth peak, and the

details are discussed in the following section. Emulation of the temporal evolution of

abundances will require further development and will be a future work.

2.2. The Rare Earth Peak

In the late time of the r-process, when the temperature and the available number of

neutrons decrease, the material starts to decay towards stability. This is called the

r-process freeze-out. During the freeze-out, the timescales of neutron captures and

β-decays become similar, and the balance of these processes may determine some of

the features of the abundance pattern, including the rare-earth peak (REP, A ∼165)
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[36, 37, 38, 39]. Fission during the freeze-out may also have a significant impact on the

formation of the rare-earth peak, as well as the second (A ∼ 130) and third (A ∼ 195)

abundance peaks [40, 41, 42]. Furthermore, some neutron-rich nuclei undergo (one or

multiple) neutron emissions following β-decays (β-delayed neutron emission). Since this

not only alters the path of the decay chains towards stability, but also provides free

neutrons during the freeze-out, it can have a significant effect on the final abundance

pattern.

According to this picture, understanding the synthesis of the lanthanides (A = 150-

180) in this mass region may allow us to probe the detailed conditions of the freeze-out

and the mechanisms of the r-process that robustly reproduce the abundance pattern

occurring in stars over a wide range of metallicities [36, 37].

The formation of the REP is sensitive to variables that control the neutron density

and neutron-to-seed ratio in the late stages of the r-process, such as the timescale for the

expansion of the material. However, these astrophysical conditions are entangled with

nuclear physics processes that provide additional neutrons, of which β-delayed neutron

emissions can be a main contributor [43]. The mass region and nuclei responsible for the

formation of the REP have previously been inferred [37]. However, the most important

nuclei lie about 10–15 mass units away from the valley of stability, and the experimental

knowledge of β-decay properties for these neutron-rich isotopes has so far been very

limited [10].

Several authors have proposed that during the r-process freeze-out the competition

between β−-decays and neutron captures shape the REP while the material decays back

to stability [36, 37, 38, 39, 43, 44]. Neutron emission following β−-decays of neutron-

rich nuclei may also have a significant impact on the abundance pattern by providing

additional neutrons to the environment and changing the mass number of the nuclide.

Nuclear masses are also relevant in the form of reaction/decay Q-values. Especially,

one neutron separation energy Sn directly affects the photodissociation rates, which are

calculated from neutron capture rates via detailed balance:

λ(γ,n) =
〈
σv(n,γ)

〉
· G(N,Z) ·G(1, 0)

G(N + 1, Z)
·
(

A

A+ 1

)3/2

·
(
mukT

2πℏ2

)3/2

· exp
(
−Sn(N + 1, Z)

kT

)
, (2)

where
〈
σv(n,γ)

〉
is the velocity-integrated neutron capture cross section for a nucleus

with N neutrons and Z protons (A ≡ N + Z), G(N,Z) is the partition function for

the nucleus (N,Z) (G(1, 0) is the partition function for neutron), mu is the mass of a

nucleon, and T is the temperature of the environment. The detailed balance implies

that a change in Sn affects the distribution of abundances in each isotopic chain during

(n, γ) ⇆ (γ, n) equilibrium. Change in the photodissociation rates may also affect the

net flow of neutron capture at the onset of freeze-out when the temperature is still

sufficiently high for the photodissociation to be active.

In this work, we focus on the effect of the β−-decay rates and one-neutron separation



Emulation of the final r-process abundance pattern with a neural network 7

energies on the REP. The effect of β-delayed neutron emission is indirectly taken into

account through the variation of β−-decay rates.

2.3. Feed-forward Artificial Neural Network

A feed-forward artificial neural network (ANN) can be described as a series of functional

transformations, where an input (vector) x is propagated through intermediate layers

and finally to the output (vector) y [22, 45]. For example, if an ANN has three layers

that are connected in a chain, it can be expressed as f(x) = f (3)
(
f (2)

(
f (1)(x)

))
. An

ANN with trainable parameters, or weights w, defines a mapping y = f (x,w), which

is trained to approximate some function y = f ∗(x). Training is typically performed

using variations of gradient descent algorithms to minimize cost functions, such as the

mean squared error cost function. The information from the cost function is propagated

backwards through the network to compute the gradient of the cost function with respect

to the trainable parameters, using the back-propagation algorithm. Much of the design

of architectures of ANNs goes into the choice of type, number (depth) and width of

layers, and how each layer is connected. In what follows, the two types of layers used

in the design of the current architecture of ANNs are described. Please see Ref. [22] for

more details.

We select the ANN library called Keras [46] as the implementation of the neural

network, which provides a high level application programming interface (API) for

TensorFlow [47] in Python.

2.3.1. Fully Connected Layers In a fully connected (or dense) layer, linear combinations

of the input of the layer are first constructed. Taking the first layer of the ANN as an

example and following the notation in [45], the linear combination can be written as

aj =
D∑
i=1

w
(1)
ji xi + w

(1)
j0 , (3)

where j = 1, . . . ,M with M being the dimension of the layer, D the dimension of the

input x = x1, . . . , xD, w
(1)
ji the weights with the superscript (1) denoting the first layer,

and w
(1)
j0 the biases. Each of aj is subsequently transformed using nonlinear activation

function h(·) to obtain outputs of the layer

zj = h(aj). (4)

The activation function is chosen to be the rectified linear unit (ReLU) h(aj) =

max {0, aj} [48], which is one of the most widely used activation functions. The

subsequent layers take the output of the previous layers, and the functional

transformations can be operated in the same manner. In the final layer, the identity

activation function (where the output of the function is identical to the input) is used

to allow for unbounded values.
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2.3.2. Convolutional Layers Convolutional neural networks (CNNs) are a type of

ANNs where convolution is used in at least one of the layers. CNNs are used most

extensively in the field of computer vision. The central assumption in CNNs is that

nearby pixels in the image data or neighboring data points in time-series data are

strongly correlated [22, 45]. Based on this assumption, it is possible to extract the local

features in the data. The general convolution operation for multidimensional arrays can

be expressed as [22]

S(i, j) = (I ∗K)(i, j)

=
∑
m

∑
n

I(m,n)K(i−m, j − n), (5)

where I is a multidimensional array image input, K is called a kernel (which is a

multidimensional array that stores the adaptive weights), and S(i, j) is the output and

is often referred to as a feature map.

In the actual implementation of convolution for machine learning purposes,

convolution is typically performed for a small subregion in an input image for each

element in a feature map. Furthermore, the weights in a feature map are used for all

the elements in an input, which is the concept called “weight (parameter) sharing”.

These reduce the number of weights that are stored in the memory, making it possible

to process images that have a large number of pixels. Each unique set of weights is often

referred to as a filter, which acts to detect different features in the input data.

The use of convolutional layers in this work is motivated by the expectation that

the properties of neighboring nuclei on the chart of nuclides have a correlated effect

on the final abundance pattern. As discussed in more detail in Section 4.1, superior

performance was obtained when convolutional layers were used.

2.3.3. Uncertainty quantification with deep ensembles In emulation of computer codes,

one of the most popular approaches is to use a probabilistic model called Gaussian

processes (GPs) [49, 50, 51, 52]. GPs provide a natural way to quantify the prediction

uncertainty in terms of the quality of the emulation. On the other hand, typical

ANNs including CNNs have deterministic weights, therefore, their predictions are

also deterministic. An approach to overcome this limitation for ANNs is to employ

Bayesian neural networks (BNNs) [53] where the weights are expressed as probability

distributions. Similarly to GPs, it is possible to quantify the prediction uncertainty

of BNNs due to their probabilistic nature. However, the computational complexity of

BNNs is large compared to traditional ANNs, and the application to CNNs is technically

challenging for non-experts.

The approach we employ in this work to quantify prediction uncertainty is called

deep ensemble, which is a simple and scalable method and has been shown to provide

robust and accurate estimates of uncertainty, comparable to BNNs [23]. In a deep

ensemble, M (ensemble size, here, M = 10) copies of the same ANN architecture are

used and each of them is randomly initialized. The final layer of the original ANN

architecture is replaced with a layer with two outputs: a predictive mean µ(x) and
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a predictive variance σ2(x). The predictive mean and variance of the ensemble are

obtained by treating the ensemble of copies of the ANNs as a uniformly weighted

mixture of Gaussian distributions. The size of the variance, or equivalently the standard

deviation, represents the estimated predictive uncertainty.

3. Numerical Experiment

3.1. Emulating Final Abundances with ANNs

The basic idea of this work is to emulate the variation in the calculated final r-process

abundance pattern when varying the nuclear physics inputs of the nuclei of interest.

The final abundances as a function of the mass number A are calculated by performing

nuclear reaction network calculations. As discussed in Section 2.1, performing a nuclear

reaction network calculation amounts to solving an initial value problem of a system of

ODEs. Therefore, in our work, emulating the abundance calculations means modeling

the function f(·) that takes some nuclear physics quantities as inputs and maps the

initial abundance pattern a function of the mass number A, YA(t = t0), to the final

abundance pattern YA(t = tf ), where tf is sufficiently larger than the timescale of the

r-process nucleosynthesis, e.g. tf = 1 Gyr.

In this work, we vary one-neutron separation energies (Sn) and the β-decay half-

lives (T1/2) of the 212 nuclei in the rare-earth region shown in Figure 1 and focus on

their effect on the rare-earth peak (Section 2.2). This model has 424 input variables

in total. The neutron separation energies and half-lives are stored as a vector and we

denote them as Sn and T1/2, respectively. They are sorted first by the proton number

of the nuclei and then the number of neutrons. The function f(·) we aim to model with

an ANN is expressed as

YA(t = tf ) = f(Sn,T1/2). (6)

Note that the function f(·) is conditional on the initial abundance pattern YA(t = t0),

astrophysical trajectory, other nuclear physics inputs, and all the other inputs of the

nuclear reaction network calculations.

3.2. Distributions of theoretical nuclear physics inputs

For the training of an ANN emulator, we first need to define how the input variables,

namely each Sn and T1/2, are distributed. If the distributions of the variables of interest

are known from uncertainty quantification of theoretical models or from experimental

uncertainties, they may be used. However, in general, theoretical nuclear data typically

used in nucleosynthesis studies do not have uncertainty estimates, including the

FRDM2012 mass model [33] and the β-decay half-lives from FRDM+QRPA [34] used

in this work. As theoretical uncertainties of Sn and T1/2, we employ the distributions

introduced in Ref. [4]. The size of the uncertainties for the Sn values are assumed to be

±0.5 MeV, uniformly distributed around the FRDM values. For the β-decay half-lives
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Figure 1. The rare-earth region of the chart of nuclides. The red squares in the

figure shows the nuclei included as input variables in the construction of the emulator.

For comparison, the nuclei included in the experimental databases are shown too:

AME2020 [54] and Nubase2020 [55]. The nuclei measured in our previous work [10]

are shown as well with the label “BRIKEN REP”. The solid black line represents the

estimated reach of radioactive beam production at the Facility for Rare Isotope Beams

(FRIB) before the upgrade to FRIB400

.

(T1/2), we assume that the decay rates (λ = ln(2)/T1/2) are distributed according to

log-normal distributions:

p(λ) =
1

λ
√
2πσ

exp

[
−(µ− ln (λ))2

2σ2

]
, (7)

where µ is the theoretical rate from the FRDM+QRPA prediction and σ2 is the variance

of the underlying normal distribution, which is set to σ = ln(2) to allow for a factor of

10 in the decay rate variation.

Practically, however, if samples drawn from the distributions of the variables are

directly used for training of the ANNs, it is likely that the tails of the distributions do not

have a sufficient number of samples. This would be especially the case for the log-normal

distributions introduced above. Therefore, we replace the log-normal distributions

with log-uniform distributions that cover the ±3.5σ intervals of the underlying normal

distributions described by Eq. 7:

p (ln(λ)) =


1

7σ
for ln(λ) ∈ [µ− 3.5σ, µ+ 3.5σ],

0 otherwise.
(8)
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To ensure that the samples evenly cover the entire variable space, we employ Sobol

sequences [56, 57]. Sobol sequences are a type of quasi-random sequence designed to

fill multidimensional variable spaces as uniformly as possible. Although termed “quasi-

random”, the generated points depend on previously sampled points and fill the gaps

between them. For more details, see Ref. [57] and references therein.

3.3. Data pre-processing and training of ANNs

In order for ANNs to achieve optimal performance, it is necessary to pre-process the

input data [58]. The main strategy for input data pre-processing in this work is

standardization, which makes the input samples distribute with zero means and standard

deviations of one. For the β-decay rates λ, standardization is performed on a logarithmic

scale. Standardization of one-neutron separation energies (Sn) is performed on a linear

scale. The standardization for each input variable is:

p̄(λ) =
ln(p(λ))− ln(λth)

σsample
lnλ

, (9)

p̄(Sn) =
p(Sn)− Sn

th

σsample
Sn

, (10)

where λth and Sn
th denote the theoretical predictions of the FRDM+QRPA model [34]

and the FRDM2012 mass model [33], respectively, σsample
λ and σsample

Sn
are the standard

deviations of the sample distributions of λ and Sn, respectively.

Training has been performed using a type of stochastic gradient descent method

called AMSGrad [59], which is a variant of one of the most commonly used methods

called Adam [60]. Training of our ANNs has been done with 300k samples, of which

280k have been used to optimize the weights in the ANN, and the remaining 20k samples

have been used for validation to check the performance of the ANN for unseen input

data. 10k samples have been additionally generated after the training is complete, to

be used as a test data set for performance evaluation.

We consider two astrophysical trajectories, which provide the temporal evolution

of density and temperature: one from cold neutron-rich dynamical ejecta of a binary

neutron star merger and the other from a hot wind. These trajectories are identical to

those used in Ref.[10]. The neutron star merger trajectory is from Ref. [61] based on the

simulations by Refs. [62] and [63]. It takes into account the effect of self-heating based on

the FRDM2012 mass model [33]. In this trajectory, the temperature decreases rapidly

and photodissociation is suppressed (Eq.2), bringing the path of the nucleosynthesis to

the neutron dripline where Sn ∼ 0. After the freeze-out, the β-decay becomes dominant

while neutron capture and photodissociation are further suppressed. The hot wind

trajectory corresponds to a hot r-process condition with low entropy of S=30 kB, an

initial electron fraction of Ye = 0.20, and an expansion timescale of 70 ms based on

Ref. [64], which is discussed in more detail in Ref. [4]. In this trajectory, temperature

stays sufficiently high to establish the (n, γ) ⇆ (γ, n) equilibrium. Therefore, the
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abundance pattern is expected to be more affected by the variation of the Sn values

compared to the cold neutron star merger trajectory.

4. Results and Discussion

4.1. Optimized Emulator Architecture

Since no previous literature has been found on emulating nuclear reaction network

calculations with ANNs to the best of our knowledge, we employ a systematic

and automated way to explore optimal ANN architectures to establish the starting

point for the architecture optimization. For this purpose, we use a method called

neural architecture search (NAS), implemented in a library called AutoKeras [65].

AutoKeras systematically varies the architecture and automatically records the best

performing model. The architecture search is guided by Bayesian optimization, which

allows for an efficient exploration of the neural network architecture.

Based on the best performing architecture found by the NAS, we further tuned the

architecture manually, mostly by changing the number of layers, the number of filters

in the convolutional layers, and the number of units in the fully connected layers.

The results of the neural network architecture optimization done by the NAS and

manually are summarized in Table 1. Our best performing architecture consists of

convolutional layers followed by fully connected (dense) layers. In total, including the

“Flatten” layer, which converts the stacked 2D data into a single vector, there are 7

layers. We have found that the use of convolutional layers is essential for achieving

satisfactory performance. The advantage of using convolutional layers is that they can

take into account the correlation between the properties of neighboring nuclei on the

chart of nuclides. We have experimented with different unit sizes for the sixth fully

connected layer, and found that using 1024 units resulted in the optimal performance.

As an activation function, ReLU has been used for all layers except the final layer. For

the final layer, a linear activation was used to allow unbounded output values. Since

the output of this layer is simply a (weighted) linear combination of the output of the

previous layer, it is called a “linear” layer. Note that the architecture does not have

any physical interpretation. The performance of the ANN model is evaluated in detail

in the following sections.

4.2. Performance

Figures 2 and 3 show comparisons between the output of the original nuclear reaction

network calculations (PRISM) [66] and the output of the ANN emulator, using the test

data set consisting of 10k samples for the two astrophysical scenarios employed. Note

that the figures only show randomly selected 1k samples to avoid overcrowding the plot.

Comparing the top two panels of the figures indicates that the ANN emulator captures

the general trends of the calculated abundances very well. The bottom panel of the
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figures shows the deviations of the output of the emulator (log Y emu
A ) from the original

(PRISM) calculations (log Y orig
A ), relative to the original calculations, defined as

y ≡ log Y emu
A − log Y orig

A

log Y orig
A

. (11)

The σy shown in the bottom panel is the standard deviation of y, calculated using

the entire 10k test samples. For the neutron star (NS) merger scenario, the standard

deviation of the value y is σy = 0.011 (1.1%). For the hot wind scenario, it is σ = 0.02

(2%). The larger variation of the abundances in the hot wind scenario is most likely

because the (n, γ) ⇆ (γ, n) equilibrium is established, which is affected by the neutron

separation energies. In the NS merger scenario, due to its extremely neutron-rich

and cold condition, the path of the r-process nucleosynthesis is pushed all the way

to the neutron dripline where Sn ∼ 0. Therefore, the photodissociation rates are highly

suppressed due to Eq. 2 and the final abundance pattern is less affected by the variation

of the Sn values of the nuclei that are far from the dripline.

The main advantage of using emulators is their speed. While a nuclear reaction

network calculation is not an extremely computationally expensive calculation, a single

run of PRISM for the neutron star merger scenario takes roughly 400 seconds on an

Intel Xeon CPU E5-2683 v4, available on the compute cluster Graham of the Digital

Research Alliance of Canada. Multiple calculations can be run independently in parallel,

but each run requires a compute core and about 4 GB of memory. On the other hand,

obtaining a single abundance pattern from our emulator only takes about 0.02 seconds

on average per evaluation over 10k evaluations, using a NVIDIA Tesla P100 GPU, also

available on Graham. For a single abundance calculation, this is a speed-up by a factor

of 20,000. Furthermore, returning outputs for multiple input samples is also efficient—it

takes about 6 second to predict 10k abundance patterns for the test data set.

4.3. Uncertainty Quantification

Uncertainty quantification of ANN predictions has been performed using deep ensembles

[23]. The top panel of Figure 4 shows an example of the uncertainty quantification

Table 1. Architecture of the neural network optimized by neural architecture search

then by hand.

Layer No. Layer type Activation Kernel size No. of filters No. of units

1 Convolutional ReLU (3,3) 128 —

2 Convolutional ReLU (3,3) 128 —

3 Convolutional ReLU (3,3) 128 —

4 Convolutional ReLU (3,3) 128 —

5 Flatten — — — —

6 Fully connected ReLU — — 1024

7 Fully connected Linear — — 31
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of an ANN prediction for the abundance pattern in the REP region (mass number

150 ≤ A ≤ 180) drawn from the test dataset, compared to the original abundance

pattern calculated with PRISM. It shows that the size of the uncertainty band is

small enough to resolve the details of the abundance pattern. The bottom panel of the

same figure shows how many of the 10k test samples of the original calculations are

covered by the ±1σ and ±2σ uncertainty bands. Since our uncertainty is assumed to

follow a Gaussian distribution, roughly 68 % and 95 % of the data points are expected

to be covered by the ±1σ and ±2σ uncertainty bands, respectively. In our numerical

experiment, it can be seen from the figure that about 80-94 % and 98-99 % of the original

calculations are covered by the ±1σ and ±2σ uncertainty bands, respectively. This

means that our uncertainty bands are somewhat under-confident (the size of uncertainty

is overestimated); nevertheless, this simple method can provide meaningful estimates of

150 160 170 180
Mass number A

10−6

10−5

10−4

10−3

R
el

at
iv

e
ab

u
n

d
an

ce
[a

rb
.

u
n

it
]

Normalized at A=163

Original (PRISM)

Original output

Goriely (1999)

Sneden et. al. (2007)

150 160 170 180
Mass number A

10−6

10−5

10−4

10−3

R
el

at
iv

e
ab

u
n

d
an

ce
[a

rb
.

u
n

it
]

Normalized at A=163

Emulator

Emulated output

Goriely (1999)

Sneden et. al. (2007)

150 155 160 165 170 175 180
Mass number A

−0.10

−0.05

0.00

0.05

0.10

y
=

(l
og
Y

em
u

A
−

lo
g
Y

o
ri

g
A

)
/

lo
g
Y

o
ri

g
A

σy = 0.011 (N = 10000)

NS merger

Figure 2. Comparison of the results with the unseen test data set between the original

nuclear network calculation by PRISM [66] (top left panel) and our ANN emulator

(top right panel) for the neutron star merger scenario, focusing on the rare-earth peak

(REP) region A = 150–180. The bottom panel shows the relative deviations of the

output of the emulator from the original (PRISM) calculations. σy is their standard

deviation, calculated using 10k samples. The plot only shows random 1k samples to

avoid overcrowding the plot. The solar abundance patterns are from Refs. [67] and

[68], and they are scaled to match the average of the PRISM calculations at A = 163,

which is the local abundance maximum in this mass region.
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prediction uncertainty.

5. An Example: Propagation of Nuclear Physics Input Uncertainty

Nuclear reaction network calculation emulators can speed up various computationally

intensive tasks, such as inverse problems, uncertainty propagation, and sensitivity

analyses. In this section, propagation of the nuclear physics input uncertainty is

demonstrated as an example of such tasks.

The nuclei of interest are the same as the input of the emulator, as shown in Fig. 1,

and their one-neutron separation energies (Sn) and β−-decay half-lives (T1/2) are the

inputs. We consider the following three hypothetical cases for the uncertainties of Sn

and T1/2:

(i) For all nuclei of interest, Sn is a uniform distribution around the FRDM2012 masses

with a range of ±0.5 MeV, and the β−-decay rate λ = ln (2)/T1/2 is a log-normal

distribution (Eq. 7) with µ being the FRDM+QRPA prediction and σ = ln (2).

This is the same as the test data.

(ii) For the nuclei within the FRIB reach shown in Fig. 1, assume that Sn is a

normal distribution with a standard deviation of ±100 keV around the FRDM2012

prediction and that T1/2 is a normal distribution with the mean being the
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Figure 3. Same figure as Figure 2, but for the hot wind scenario.
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FRDM+QRPA prediction and the standard deviation being 20% of the mean. For

other nuclei, the distributions are the same as in (i).

(iii) For all nuclei of interest, Sn is a normal distribution with a standard deviation of

±100 keV around the FRDM2012 prediction and T1/2 is a normal distribution with

the mean being the FRDM+QRPA prediction and the standard deviation being

20% of the mean.

In cases (ii) and (iii), the normal distributions represent the hypothetical experimental

uncertainty, the predictions by FRDM2012 and FRDM+QRPA being the hypothetical

nominal experimental values. Since the distributions in cases (ii) and (iii) are narrower

than those in case (i), which are identical to the test data, the performance of the

emulator demonstrated in Section 4.2 applies. 10k samples are generated from these

distributions (each sample consists of the Sn and T1/2 of the 212 nuclei), and the

nucleosynthesis yields in the rare-earth region have been predicted with the emulator.
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Figure 4. Panel (a) shows an example of the emulated abundance pattern and the

estimated ±1σ and ±2σ uncertainty bands of one of the test samples, compared to the

original (PRISM) calculation. Panel (b) shows how many of the original calculations of

the 10k test samples are covered by the ±1σ and ±2σ uncertainty bands, respectively.
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The propagated uncertainty bands in the three cases are shown in Fig. 5, for the neutron

star merger dynamical ejecta condition (top) and the hot wind condition (bottom).
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Solar abundance (Goriely 1999)
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Figure 5. Uncertainty bands of abundance patterns propagated from the uncertainties

of one-neutron separation energies Sn and β−-decay half-lives T1/2 (or equivalently

decay rates λ) using emulators. The top panel shows the results for the neutron star

dynamical ejecta condition and the bottom panel shows the hot wind condition. In the

top panel, the band with the lightest blue color is not visible except for 172 ≤ A ≤ 180,

since it is mostly overlapping with the band with the medium-light blue color. The

solar abundance pattern and its uncertainty [67] is also shown for comparison.

For both astrophysical conditions, it can be seen that the nuclear physics input

uncertainty described in case (i) results in significant uncertainties in the abundance

pattern in the rare-earth region compared to the observed solar abundance pattern.

When the uncertainty is reduced for the nuclei within the FRIB reach, there is a

significant reduction in the abundance pattern uncertainty for the hot wind condition,

but the reduction is minimal in the dynamical ejecta condition. This is because, in the

hot wind condition, (γ, n) photodissociation is enhanced due to the higher temperature
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and the r-process path is determined by the (n, γ) ⇆ (γ, n) equilibrium, which depends

sensitively on the Sn values (Saha equation). In the cold and neutron-rich dynamical

ejecta condition, photodissociation is highly suppressed and the path lies very close to

the one-neutron drip line. This is why the reduction in uncertainty is only visible when

the nuclear physics uncertainty is also reduced for more neutron-rich nuclei, as in case

(iii).

The amount of time it took the emulator to predict the 30k abundance patterns

(10k each for the three cases in one astrophysical condition) was about 19 seconds

on a Nvidia GPU Tesla P100. A single nuclear reaction network calculation with the

same input takes 1-10 minutes; therefore, calculating 30k abundance patterns would

take 500-5000 core hours. Of course, a large number of samples are required to

train the emulator; however, once the training is complete, one can quickly perform

computationally intensive tasks as demonstrated in this example.

6. Conclusions

In this work, we have shown that it is possible to emulate the calculation of final

abundance pattern with traditional ANNs consisting of convolutional layers followed by

fully connected layers. Emulators have been constructed for two astrophysical scenarios:

neutron star mergers and the hot wind. The performance of the emulator has been

demonstrated focusing on the rare-earth peak region (150 ≤ A ≤ 180), by treating the

β-decay rates and the one-neutron separation energies of 212 isotopes as input variables

for our ANN (in total 424 input variables). For both astrophysical trajectories, the ANNs

can approximate the original calculations by the nuclear reaction network calculation

code PRISM with less than 5 % deviation.

We demonstrated estimation of the predictive uncertainty of the ANN using deep

ensembles, and the quality of the uncertainty estimation has been evaluated. The

method provides conservative but meaningful uncertainty bands.

Dramatic speed-up of a single r-process abundance calculation, roughly by a factor

of 20,000, has been achieved. The emulator can also predict a large number of abundance

patterns at once in a short amount of time. This implies that large-scale statistical

tasks that require performing nuclear reaction network calculations repeatedly, such

as uncertainty quantification, inverse problems, and variance-based sensitivity analyses,

can be performed significantly faster, as illustrated by the example of the nuclear physics

input uncertainty propagation.

Although this work has shown that it is possible to create an emulator for abundance

calculations by focusing on the properties of rare-earth nuclei and their final abundances,

further development is required to create an emulator that can handle the entire chart of

nuclides. This is a challenging task due to the high-dimensional input space; therefore, it

will most likely require a clever dimension reduction method as well as efficient learning

algorithms. For a full emulation of nuclear reaction network calculations, the time

dependence of nuclear abundances must be emulated. The ability to take astrophysical
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conditions (temporal evolution of temperature and density) as variable input would also

be desirable.
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