
In Memoriam

This paper is dedicated to the memory of our friend and colleague Arnie J. Sierk who contributed significantly to
the development and application of macroscopic-microscopic nuclear fission theory throughout his career.
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We have calculated a complete set of primary fission fragment mass yields, Y (A), for heavy nuclei
across the chart of nuclides, including those of particular relevance to the rapid neutron capture
process (r process) of nucleosynthesis. We assume that the nuclear shape dynamics are strongly
damped which allows for a description of the fission process via Brownian shape motion across
nuclear potential-energy surfaces. The macroscopic energy of the potential was obtained with the
Finite-Range Liquid-Drop Model (FRLDM), while the microscopic terms were extracted from the
single-particle level spectra in the fissioning system by the Strutinsky procedure for the shell energies
and the BCS treatment for the pairing energies. For each nucleus considered, the fission fragment
mass yield, Y (A), is obtained from 50,000 – 500,000 random walks on the appropriate potential-
energy surface. The full mass and charge yield, Y (Z,A), is then calculated by invoking the Wahl
systematics. With this method, we have calculated a comprehensive set of fission-fragment yields
from over 3,800 nuclides bounded by 80 ≤ Z ≤ 130 and A ≤ 330; these yields are provided as an
ASCII formatted database in the supplemental material. We compare our yields to known data and
discuss general trends that emerge in low-energy fission yields across the chart of nuclides.

I. INTRODUCTION

The description of nuclear fission has presented excep-
tional challenges to the theoretical modeling of heavy nu-
clei since its discovery in the late 1930’s [1]. One way to
view this complicated physical process is to consider the
evolution of the nuclear shape as it progresses from a
compact form through increasingly deformed shapes un-
til the division into two fragments occurs at the scission
configuration [2, 3], as illustrated in Fig. 1. This general
picture naturally leads to the description of the fission
process in terms of a potential-energy surface (PES) as
a function of the nuclear shape. The accumulation of
many fission events provides the primary fission fragment
yield whose appearance is sensitive to the structure of the
nuclear system. In this description, much is still uncer-
tain about the evolution of the nuclear shape and, con-
sequently, about the extracted fission yields. For exam-
ple, what are the most probable trajectories through the
shape configuration space? How do these paths depend
upon the dissipative coupling of the shape to the remain-
der of the system? And, which microscopic properties
impact the division of the nucleus at scission? Questions
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like these drive the current research in fission dynamics.
Our ability to calculate fission fragment yields across the
chart of nuclides has wide reaching implications for a va-
riety of applications, from nuclear security and reactor
operations to our understanding of the cosmos in astro-
physical explosions [4–10].

Many methods have been proposed for calculating fis-
sion fragment yields. Phenomenological approaches [11–
18] typically consist of simple models with fitted param-
eters with varying degrees of refinement. The parame-
ters of these models are determined by comparisons to
mass or charge yields or other fission observables in the
actinide region. Simple, yet insightful descriptions of ob-
served phenomena can arise, such as in the case with the
unchanged charge distribution of Ref. [19]. These ap-
proaches can reproduce experimental or evaluated data
when it is known, but the applicability across the chart
of nuclides outside the narrow fitting region is still in
question.

In contrast, microscopic models for the description of
fission are built upon the consideration of an effective
energy density functional (EDF), minimized in a chosen
trial subspace of the full many-body Fock space while
subject to external constraints on the density distribu-
tion (e.g. the quadrupole moment Q2 which governs the
overall distortion away from a sphere or the octupole mo-
ment Q3 which influences the reflection asymmetry of
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the system) [20]. The self-consistent Hartree-Fock (HF)
equations arise from the minimization of the EDF by
assuming a system of independent nucleons, with the
trial space taken to be the set of Slater determinants
of the constituent nucleons. Pairing can be included
self-consistently by extending the trial space to quasi-
particle Slater determinants, leading to the Hartree-Fock-
Bogoliubov (HFB) model [21, 22]. These treatments
make it possible to calculate the nuclear PES as a func-
tion of the constraints employed (Q2, Q3, ..), and they
have been widely used in fission studies [23–26]. How-
ever, the required computational effort is considerable
which imposes a practical limit on the number of con-
straints that can be included, currently up to just two
or three [26–28]. As a consequence, the resulting energy
surfaces may exhibit spurious discontinuities and, impor-
tantly, the fission barrier heights cannot be determined
with confidence [29–32]. Although methods exist for rem-
edying this inherent problem [31], the required computa-
tional cost is prohibitive. The microscopic approach, at
the present time, is therefore best suited for studies of
specific nuclei, but is not adequate for large-scale, global
studies of fission yields and their trends across the chart
of nuclides. A recent review covering the progress of this
approach can be found in Ref. [20].

The macroscopic-microscopic approach offers a sim-
pler and very effective framework for calculating the nu-
clear PES [33]. This method was originally developed
for the calculation of nuclear masses because purely mi-
croscopic calculations tend to have difficulty obtaining
accurate absolute energies due to the small but signif-
icant role played by many-body correlations which are
hard to treat. Nuclear masses exhibit smoothly varying
macroscopic trends, reflecting the energetics of a charged
droplet, overlaid with small-amplitude deviations reflect-
ing the microscopic nuclear structure [34–36]. The nu-
clear potential-energy surface is therefore considered to
consist of a macroscopic liquid-drop like energy func-
tional, whose parameters (volume energy, surface ten-
sion, ...) are determined by global fitting to the measured
masses, and a microscopic contribution expressing the
shell [37] and pairing corrections [38], which can be cal-
culated from the neutron and proton level spectra in the
deformed effective potential well. This approach makes
it possible to calculate the potential energy of any nu-
clear system with Z protons and N neutrons, (Z,N), as
a function of its shape (as well as its angular momentum).

The above approaches can be used to not only pro-
vide the static nuclear PES but also to obtain the
temporal evolution of the fissioning system. The HF
and HFB Hamiltonians naturally lead to the time-
dependent Hartree-Fock (TD-HF) and time-dependent
Hartree-Fock-Bogoliubov equations (TD-HFB) [39–42].
However, these methods are not well suited for processes
that generate qualitatively different final configuration,
such as fission, because of the restriction to a single
Slater determinant. A more general approach consid-
ers the time-dependent state as a superposition of many

A
B

Po
te

nt
ia

l e
ne

rg
y

Overall elongation

N
uc

le
ar

 s
ha

pe

Ground state

Max saddle
Excitation energy

Isomer

Outer saddle

ScissionSpherical Neck formationElongated

FIG. 1. A schematic illustration of the fission process: The
lower panel shows the potential energy of the nuclear system
along its most probable path, while the upper panel shows
the appearance of the system at four stages along that path.
The nuclear shape, which is initially located near that of the
ground state, is strongly coupled to the internal microscopic
degrees of freedom and, as a result, it executes a Brownian-
like random walk on the multidimensional potential-energy
surface. After passing over the various saddle points, gener-
ally after multiple attempts, the system eventually acquires
a binary shape and reaches a necked-in scission configura-
tion where it divides into two fission fragments. The shown
potential-energy profile is representative of known actinides,
and may be differ qualitatively for nuclei in other regions.

microscopic states having time-dependent weights, lead-
ing to the time-dependent generator coordinate method
(TDGCM) [43, 44]. A recent attempt has been made to
couple TD-HF methods with TDGCM [44–46].

An alternative approach is to treat the evolution of
the shape degrees of freedom (whether the multipole con-
straints Qλ used in the microscopic models or the shape
parameters χ used in the macroscopic-microscopic treat-
ment) by means of classical transport theory [47]. The
most complete transport treatment is provided by the
Langevin equation [48–50] which, in addition to the PES,
also requires the associated collective inertial-mass tensor
as well as the dissipation tensor describing the coupling
of the collective variables to the remaining system. Be-
cause the nuclear shape evolution is strongly dissipative
[42, 51], substantial simplification may be obtained by
considering the strongly damped limit in which the evo-
lution is governed by the balancing of the driving force
from the PES and the dissipative force. The collective co-
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ordinates then exhibit a Brownian-like motion which can
be simulated numerically as a random walk [52]. The
simplicity of this approach together with its remarkable
agreement with known data make it suitable for global
studies of fission yields [53, 54]. We therefore employ this
treatment of fission dynamics in the present work.

The present study requires several successive steps and
we discuss them in turn below. First, in Sect. II, we in-
troduce the adopted nuclear shape family and then, in
Sect. III, we describe the calculation of the associated
potential-energy surfaces. The key assumptions about
the shape evolution are reviewed in Sect. IV and the de-
tails of the fragment yield calculations are provided in
Sect. V. Building upon past work [55], we calculate, in
Sect. VI, the primary fragment mass yields for the entire
region of nuclides bounded by 80 ≤ Z ≤ 130 and A ≤ 330
and discuss the emerging global trends. The supplemen-
tal material provides the calculated fission yields in tab-
ulated ASCII format. Throughout we make several re-
marks on the possible implications of these yields for the
astrophysical rapid neutron capture process (r-process)
of nucleosynthesis.

II. NUCLEAR SHAPES

An important lesson from the fission studies in recent
years is that it is critical to consider a sufficiently rich
shape family to allow the fissioning system to exploit
the detailed topographic features of the associated multi-
dimensional potential-energy surface, such as the height
and character of the barrier and the shell effects in the
emerging fragments. As covered in detail in Ref. [30], fal-
lacies in finding saddle points can ensue if only a limited
number of shape degrees of freedom are considered.

As first pointed out by Nix [33], it appears that a min-
imum of five shape degrees of freedom are required for
an adequate description of low-energy fission, namely a
measure of the overall elongation of the system, the de-
gree of indentation between the two emerging fragments,
the individual deformations of these fragments, and the
overall reflection asymmetry.

A well suited parameterization is provided by the
three-quadratic-surface (3QS) shape family [56] in which
those shape characteristics are given respectively by the
overall quadrupole moment Q2, the neck radius c, the de-
formation parameters εf1 and εf2, of the two spheroidal
endcaps, and the geometrical mass asymmetry αg. The
shapes included range from compact (even oblate) con-
figurations (including ground-state shapes) over interme-
diate shapes (such as saddle and isomeric configurations)
to the binary configurations near (and at) scission and
beyond. This parameterization has been employed exten-
sively, see Ref. [50] and references therein. In particular,
it has been used to calculate potential-energy landscapes
from which binding energies [57], fission barriers [30, 58],
and other properties have been derived and benchmarked
against available data throughout the nuclear chart.

Several alternative shape parameterizations exist to
3QS, e.g. see [59–61] and references therein. The diffi-
culty for any parameterization in describing fission hap-
pens where very distorted shapes appear and where the
microscopic effects in the fledging fragments are essen-
tial. Other frequently used shape parameterizations, for
example, those used in early studies by Nilsson et al. [62]
employed perturbed spheroids, but while these are well
suited for shapes near the ground state (see, for exam-
ple, Ref. [30]), they generally grow ever more inadequate
(or impractical) for large deformations. In their seminal
work [35], Brack and collaborators introduced a three-
dimensional shape family that has been employed in nu-
merous studies ever since, but it lacks sufficient flexibility
and is more appropriate at higher energies where the mi-
croscopic effects are minimal. Finally, the frequently em-
ployed multipole expansion of the nuclear radius does not
provide a unique representation of the nuclear potential-
energy surface in the region of large deformations relevant
to fission [63].

In the present work we shall therefore employ the
3QS shape family. Accordingly, a particular shape is
then characterized by the five-dimensional shape coordi-
nate χ = (Q2, c, εf1, εf2, αg) and a corresponding Carte-
sian lattice was constructed in Ref. [30]. We employ a
similar discrete Cartesian lattice in the five-dimensional
shape parameter space and use the indices (I, J,K,L,M)
to identify the sites. The index I = 1, . . . , 45 repre-
sents values of the quadrupole moment, Q2; the index
J = 1, . . . , 15 represents the neck radius, c; the indices
K,L = 1, . . . , 15 span endcap deformations ε ranging
from -0.2 to 0.5; and the index M = −33, . . . , 33 spans
a sufficiently wide range of asymmetries. The values
of the quantities corresponding to the indices I, J,K,L
are not necessarily equidistant. This lattice contains
over ten million sites but, due to the fact that the site
(I, J,K,L,M) represents the same physical shape as the
site (I, J, L,K,−M), except for an overall reflection,
there is no need to tabulate potential energies for nega-
tive M values. The step size of αg gives a fragment mass
resolution of ∆A = 2.4 for 240Pu and ∆A ≈ 3 for the
heaviest nuclei considered in this work having a fission-
ing mass number of A = 330. This tolerance is roughly
similar to the current experimental fragment mass reso-
lution.

III. POTENTIAL-ENERGY SURFACES

The potential energy of an arbitrarily shaped nuclear
system, U(S), represents the lowest possible energy the
system can have at the specified geometric shape. This
function can be conveniently calculated by means of the
macroscopic-microscopic method, according to which the
energy is a sum of a smoothly varying liquid-drop like
macroscopic term and an undulating microscopic term
that accounts for the shell and pairing energies,

U(S) = Emacro(S) + Emicro(S), (1)
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where S denotes the specified shape. When χ replaces
S, this signals that a given choice of shape parameters, in
our case from the 3QS shape parameterization, has been
used to describe the geometry of the nuclear shape.

At a given total energy, E, the local excitation energy
(i.e. the excitation energy of the nucleus at a specified
shape S) is given by E∗(S) = E − U(S). As the total
energy is increased (by increasing the kinetic energy of
the incoming neutron in (n,f) reactions), the local exci-
tation energies increase correspondingly and, genereally,
the microscopic contributions to the potential energy de-
crease. As a result the effective potential energy surface
experienced by the evolving shape is modified, approach-
ing Umacro(S) at high energies. This effect will be taken
into account by multiplying Umicro(S) by the suppression
factor S(E∗(S)) suggested in Ref. [54] and thus using

UE(S) = Emacro(S) + Emicro(S)S(E∗(S)) . (2)

This method has been extensively benchmarked and
widely applied in the context of fission studies [30, 50, 52–
55]. When applied to studies of ground state proper-
ties via the Finite-Range Droplet Model (FRDM), it also
yields a very good overall reproduction of measured nu-
clear masses throughout the nuclear chart [57, 64, 65].
This is an incredible triumph of this methodology, given
that the parameters have varied very little over the years,
and the predictability with respect to new measurements
has remained rather constant.

The construction of the nuclear PES proceeds as fol-
lows:

1. Specification of a nuclear shape parameterization
(in this work the five shape coordinates).

2. Calculate the macroscopic energy terms as outlined
in the next section.

3. Calculate the single-particle levels using a folded-
Yukawa potential as in Ref. [57].

4. Calculate microscopic shell and pairing corrections.
5. Add the macroscopic and microscopic correction

terms together using Eq. (1).

A collection of all the possible distinct nuclear shapes
between the ground state and scission configurations de-
fines the complete PES for the specified choice of shape
parameterization. The large choice of grid space can lead
to some shape combinations that may produce unphys-
ical results. We handle this issue, as in past work, by
making those points of the PES very large (inaccessible)
relative to the physical points. We now review the macro-
scopic and microscopic terms that comprise the PES.

A. Macroscopic energy

For the macroscopic energy, we adopt the Finite-
Range Liquid-Drop Model (FRLDM), Emacro(S) =
EFRLDM(S). While this model was described in Ref. [64],
the actual parameter values employed in Refs. [30, 66]

have not appeared in an individual publication. We
therefore assemble here the different formulas and pa-
rameter values involved in the model for completeness.

EFRLDM(S) = MHZ +MnN mass excess

− avEV(S) volume energy

+ asES(S) surface energy

+ a0A
0BW(S) A0 energy

+ c1
Z2

A1/3
B3(S) Coulomb energy

− c4
Z4/3

A1/3
Coul. exchange corr.

+ f(kfrp)
Z2

A
prot. form-factor corr.

− ca(N − Z) charge-asym. energy

+WEW(S) Wigner energy

+ ∆̄ avg. pairing energy

− aelZ
2.39 , bound electrons

(3)
where we have

EV(S) =
(
1− κvI

2
)
A , (4)

ES(S) =
(
1− κsI

2
)
B1(S)A2/3 , (5)

EW(S) = |I|BW(S) +

{
1
A Z and N odd and equal ,

0 otherwise ,

(6)

∆̄ =


+∆̄p + ∆̄n − δnp Z and N odd ,

+∆̄p Z odd, N even ,

+∆̄n Z even, N odd ,

+0 Z and N even ,

(7)

I =
N − Z
A

, (8)

c1 =
3

5

e2

r0
, (9)

c4 =
5

4

(
3

2π

) 2
3

c1 , (10)

f(x) = −
r2
pe

2

8r3
0

(
145

48
− 327

2880
x2 +

1527

1209600
x4

)
,

(11)

kf =

(
9πZ

4A

) 1
3 1

r0
, (12)

∆̄n =
rmacBs(S)

N1/3
, (13)

∆̄p =
rmacBs(S)

Z1/3
, (14)

δnp =
h

Bs(S)A2/3
. (15)

The shape-dependent coefficients are the relative sur-
face energy Bs(S), the relative generalized surface energy
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B1(S), the relative Coulomb energy B3(S) and the rela-
tive Wigner energy BW(S). These quantities are defined
by integrals over the geometry of the nuclear shape:

Bs(S) =
A−2/3

4πr2
0

∫
S

dS , (16)

B1(S) =
A−2/3

8π2r2
0a

4

∫∫
V

(
2− σ

a

) e−σ/a
σ/a

d3rd3r′ , (17)

B3(S) =
15A−5/3

32π2r5
0

∫∫
V

d3rd3r′

σ

[
1−

(
1 +

σ

2aden

)
e
− σ
aden

]
,

(18)

BW(S) =


(

1− S3(S)
S1(S)

)2

ad + 1 σ2 ≤ 0 ,

1 σ2 ≥ 0 .
(19)

In these expressions, σ = |r − r′|, S1(S) is the area of
the maximum cross section of the smaller one of the end
bodies and S3(S) is the area of the geometric shape S at
the neck location.

The model parameters involved in these expressions
are decomposed into four categories. The first category
corresponds to the fundamental constants and contains

MH = 7.289034 MeV ,
Mn = 8.071431 MeV ,
e2 = 1.4399764 MeVfm .

(20)

The second category is the set of parameters not con-
strained by atomic masses (e.g. with comparison to eval-
uated data [67, 68])

ael = 1.433× 10−5 MeV ,
rp = 0.80 fm ,
r0 = 1.16 fm ,
a = 0.68 fm ,

aden = 0.70 fm .

(21)

The value of the parameters included in these two cat-
egories are unchanged since FRLDM1993 [64]. The third
category corresponds to the parameters that are chosen
from consideration of odd-even mass differences. Their
values are

rmac = 4.80 MeV ,
h = 6.6 MeV ,
W = 0.68 MeV ,
ad = 0.9 .

(22)

In this category, only the value of the Wigner damping
constant ad has been modified from ad = 0 (FRLDM1993)
to ad = 0.9 (FRLDM2002). The nonzero value of the ad

parameter plays a role in the preference of asymmetric
shape configurations near scission.

The fourth and last category contains the parameters
that are adjusted on evaluated masses

av = 16.02500 MeV ,
κv = 1.93200 MeV ,
as = 21.33000 MeV ,
κs = 2.378 MeV ,
a0 = 2.04000 MeV ,
ca = 0.09700 MeV .

(23)

B. Microscopic energy

The calculation of the shape-dependent microscopic
energy term, Emicro(S), is as described in FRLDM1993
[64], including the details of the shell correction and
Lipkin-Nogami pairing along with all the associated pa-
rameter values.

Once a shape family has been adopted, the shape pa-
rameter χ can be regarded as specifying a sharp gen-
erating density, ρ̂χ(r), from which the corresponding
diffuse effective neutron and proton potentials can be
generated by a convolution procedure, using a kernel of
Yukawa form; spin-orbit and Coulomb potentials are sub-
sequently added. The Schrödinger equation then yields
the associated single-particle level spectra from which the
shell energy is obtained by the Strutinsky subtraction
procedure and the pairing energy is obtained by means
of the BCS treatment [36]. The resulting microscopic en-
ergy then has an additive form in both the constituent
neutrons and protons,

Emicro(S) = Eshell(S) + Epair(S) (24)

= E
(n)
shell(S) + E

(p)
shell(S) + E

(n)
pair(S) + E

(p)
pair(S) .

It is worth keeping in mind that in the macroscopic-
microscopic approach, the effective single-particle poten-
tials as well as the neutron and proton density distri-
butions obtained from the corresponding wave functions
generally have multipole moments that differ slightly
from those of the specified generating density as well as
from one another.

C. Typical features of potential-energy surfaces

Because it is difficult to visualize the features of the
five-dimensional potential energy surface, a reduction to
two dimensions is often performed and these can be very
instructive for the analysis of fission yields. In order to
illustrate the typical character of the energy landscape,
we show in Fig. 2 reduced landscapes in the Q2 − αg

plane for three widely studied cases, namely (a) 236
92U, (b)

240
94Pu, and (c) 234

96Cm. These two-dimensional visualiza-
tions have been obtained by minimizing U(I, J,K,L,M)
over J,K,L for each combination (I,M).

The left two panels show that both 236U and 240Pu ex-
hibit a distinct barrier ridge (& 9 MeV) that inhibits
symmetric fission at low energies. These nuclei have
their largest barriers in scission trajectories on the or-
der of 5 MeV. The higher barriers shown here represents
the variation in the potential that can arise from the
choice of other shape coordinates when projecting down
to two dimensions; a key point to remember in our further
discussions. Turning to panel (c), a symmetric fission
mode is likely in 234

96Cm as the fission path along αg = 0
shows no major hills to climb while a slight ridge between
(Q2/b)

1
2 ∼ 6 and 8 discourages more asymmetric paths.
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FIG. 2. (Color Online) The projected potential energy surfaces for (a) 236
92U, (b) 240

94Pu, and (c) 234
96Cm are plotted versus

elongation and asymmetry. The asymmetric fission of U and Pu can be understood as a result of the primary barrier being
symmetric; thus the yields exhibit an asymmetric splitting at low excitation energy. In contrast, Cm has no such barrier and
is therefore predicted to split symmetrically, as reflected in panel (c).

The differences in the topography of these potential-
energy surfaces illustrates the importance of the micro-
scopic effects in determining the character of the result-
ing fission fragment yields. A pedagogical example comes
from the study of major actinides, for which the heavy
fragment tends to be near the closed neutron shell at
N = 82 and, consequently, tends to have a spherical
shape, while the lighter partner is moderately deformed.

IV. SHAPE EVOLUTION

In the treatment of the fission dynamics, the shape
parameter χ = (Q2, c, εf1, εf2, αg), is regarded as a classi-
cal variable. Accordingly, its evolution may be described
within the framework of standard transport theory. The
most important physical ingredient in this treatment is
the potential energy landscape, U(χ), which provides the
driving force acting on the shape coordinate χ. The re-
sulting ‘acceleration’ of χ will endow the system with a
collective kinetic energy and it is therefore generally nec-
essary to also know the associated collective inertial-mass
tensor, M(χ).

Furthermore, the macroscopic degrees of freedom as-
sociated with the nuclear shape are coupled to the re-
maining, microscopic, degrees of freedom which can be
regarded as a thermal reservoir. As a consequence, the
shape parameter χ continually receives impulses whose
effect can be described by means of the collective dissi-
pation tensor, γ(χ).

As of now, a microscopic calculation of the inertia ten-
sor M(χ) would involve the inversion of the QRPA ma-
trix, see Ref. [20]. Standard approximations (e.g. the
cranking model) used to avoid calculating the full tensor
are not well understood [69]. Therefore, more complete

dynamical treatments, such as those based on the clas-
sical or quantal Langevin equation, most often employ
a fluid-dynamical mass tensor calculated under the as-
sumption of incompressible irrotational flow, even though
the resulting tensor is known to be incorrect, both quanti-
tatively and even qualitatively. In our present treatment,
we avoid this problem by working in the limit of strong
dissipation where the collective motion is so slow that the
inertia plays no role for the shape evolution [52, 53].

A. Strongly damped limit

If the coupling of the considered shape degrees of free-
dom χ to the residual nuclear system is sufficiently strong
then the resulting shape motion is so slow that the iner-
tial effects are negligible [70]. In this limit, the general
Langevin equation reduces to the Smoluchowski equation
which expresses the balancing of the driving force and the
dissipative force,

F pot(χ) + F diss(χ, χ̇) = 0 , (25)

where χ̇ is the time derivative of the collective shape
variables. The driving force F pot = −∂U(χ)/∂χ seeks
to lower the potential energy. The dissipative force F diss

arises from the coupling of χ to the remaining part of
the system and it has a stochastic character, so that it
is necessary to consider an entire ensemble of possible
evolutions. The average of F diss is the friction force,
F fric = −γ · χ̇, which damps the shape motion, while
the residual part of F diss causes the evolution to also be
diffusive.

A general formal framework for treating the ensemble
of evolutions, generated by the Smoluchowski equation
is provided by the Fokker-Planck equation which governs
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the time evolution of P (χ), probability distribution for
the system to have the shape χ = {χi},

∂

∂t
P (χ, t) = −

N∑
i=1

∂

∂χi
ViP +

N∑
i,j=1

∂

∂χi

∂

∂χj
DijP . (26)

The drift coefficient, a tensor of rank one, V (χ) =
{Vi(χ)}, determines the average evolution, while the
diffusion coefficient, a tensor of rank two, D(χ) =
{Dij(χ)}, governs the growth of correlated fluctuations.
These roles of the transport coefficients are most clearly
brought out when one starts from a sharply peaked distri-
bution, P (χ, t = 0) ∼ δ(χ− χ0), in which case the mean
shape parameters, {χ̄i(t)} ≡ {

∫
χiP (χ, t)dχ}, and their

covariances, {σij} ≡ {
∫
χiχjP (χ, t)dχ − χ̄i(t)χ̄j(t)},

evolve initially as follows,

∂

∂t
χ̄i = 〈Vi(χ)〉 , ∂

∂t
σij = 2〈Dij(χ)〉 . (27)

The basic transition rates for the shape changes must
satisfy detailed balance. Thus the rate for the change
χ→ χ′ and the rate for the reverse change χ′ → χ must
have a ratio equal to that of the corresponding final-state
level densities, ρ(χ′) and ρ(χ), respectively,

λ(χ→ χ′)ρ(χ) = λ(χ′ → χ)ρ(χ′) . (28)

In the approximation where the shape-dependent level
density ρ(χ) depends only on the local nuclear excita-
tion energy E∗(χ), i.e. ρ(χ) = ρ̃(E∗(χ)), the transport
coefficients are given by

V (χ) = µ(χ) · F pot(χ) , D(χ) = µ(χ)T (χ) , (29)

where the mobility tensor, µ, is the inverse of the dissi-
pation tensor γ and T = 1/[∂ ln ρ(E∗)/∂E∗] is the local
temperature (see below). The relation (29) is consistent
with the fluctuation-dissipation theorem often referred to
as the Einstein relation.

When the parameter space is multi-dimensional (in the
present case, χ is five-dimensional), it is often impracti-
cal to solve the Fokker-Planck equation, as both space
and time requirements grow overwhelming. Instead, it
is preferable to represent P (χ, t) by a sample of dynami-
cal trajectories, {χ(n)(t)} whose evolutions are simulated
directly. Any desired observable can then be readily ex-
tracted from these as easily as from P (χ, t).

B. Brownian motion on the shape lattice

When the Smoluchowski equation is simulated directly,
the shape parameter χ executes a generalized Brownian
motion. Each change in χ consists of a deterministic
term, caused by the driving force from the PES (and
resisted by the friction force, see Eq. 25), and a ran-
dom term resulting from the residual part of F diss. The
change in χ accumulated over a small time interval, ∆t,

can be computed by diagonalizing the mobility tensor,
µ. In this basis, it reads,

∆χ =

5∑
n=1

e(n)
[
∆t e(n) · F pot +

√
2T∆t ξn

]
, (30)

where {e(n)(χ)} are the five eigenvectors of the mobility
tensor, µ =

∑
n e

(n)e(n), and {ξn} are five random num-
bers sampled from a distribution having zero mean and
unit variance (such as a normal distribution) [53].

The above propagation procedure applies when the po-
tential energy and the mobility tensor are known as func-
tions of the shape parameter χ. Further, χ is considered
as a continuous variable. However, in the present study
we know these quantities only on the discrete shape lat-
tice described in Sec. II. We therefore wish to replace
the above continuous Brownian motion governed by (30)
with a random walk on the lattice sites.

This is a difficult task because the mobility tensor is
generally not aligned with the lattice directions. How-
ever, it was argued in Ref. [52] that the outcome of the
strongly damped nuclear shape evolution is not so sen-
sitive to the specific structure of µ, so that it may be
replaced by an isotropic tensor, µnn′ ∼ δn,n′ . This expec-
tation was supported by the subsequent studies in Ref.
[53] and we shall adopt this approximation in our present
study even though we must expect it to be occasionally
less accurate.

It is then elementary to show [52, 53] that the Brow-
nian shape evolution (30) can be performed on the lat-
tice by the simple Metropolis procedure [71] according
to which the shape is moved from the current lattice site
X = (I, J,K,L,M) to a randomly chosen neighboring
one X ′ = (I ′, J ′,K ′, L′,M ′) with the probability

P (X →X ′) = ρ(X ′)/ρ(X) , (31)

where ρ(X) is the local level density at the shape corre-
sponding to the lattice site X. The above relation (31)
should be understood to mean that the proposed shape
change happens with certainty whenever ρ(X ′) ≥ ρ(X).

In the present study, we employ the simplified Fermi-
gas level density, ρ(χ)FG(E∗(χ)) ∼ exp(2

√
aE∗), for

which the shape dependence enters only via the shape
dependence of the local excitation energy, E∗(χ) =
Etot − U(χ), which is of the form leading to Eq. (29).
The parameter a = A/8 is the typical constant level den-
sity for a system with A nucleons. The spacing of the
employed shape lattice is sufficiently fine to allow a first-
order expansion [53], so the Metropolis criterion (31) then
simplifies,

ρ(χ′)

ρ(χ)
≈ exp

[
∂ ln ρFG

∂E∗
∂E∗

∂χ
·∆χ

]
≈ e−∆U/T , (32)

where ∆χ = χ′ − χ is the proposed shape change and
∆U = U(χ′) − U(χ) ≈ −F pot · ∆χ is the associated
change in the potential energy, where the driving force
is F pot = ∂E∗(χ)/∂χ = −∂U(χ)/∂χ. The above ex-
pression (32) is the form used in the original [52] and
subsequent work. We shall employ it here as well.
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C. Features of the shape evolution

We discuss here the most interesting features of the
Brownian shape motion using the evolution across the
236
92U PES as an example. We set the excitation energy

to just above ∼ 5 MeV, which is slightly higher than the
highest fission barrier.

Four distinct stages of the Metropolis implementation
of Brownian motion for 236

92U are shown in Fig. 3. This
calculation begins in the ground state, panel (a), and
proceeds via stochastic steps towards scission, panel (d).
Typically in fission calculations, the bulk of the compu-
tational effort is taken up attempting to move out of the
ground state minimum and beyond the first major saddle
point. However, along the path, the density of the Monte
Carlo steps is highest in the fission isomer minimum be-
tween panels (b) and (c). The reason for this is a biased
potential employed between the ground state and max-
imum saddle, which has been used extensively in past
work and is discussed further in Sec. V C. Once beyond
the outer saddle, between panels (c) and (d), the sys-
tem quickly proceeds downhill with relatively few steps
required to reach scission. Note the appearance of an
asymmetric fission valley only once the trajectory comes
close to scission in panel (d). The larger energy scale in
this figure relative to Fig. 2 arises due to the projection
of the PES using the shape variables (c, εf1, εf2) that are
held fixed given the state of the system, denoted by an
orange circle, in each panel.

The large mountains of 60 MeV seen in Fig 3 are
never reached in any stochastic random walks for the
low-energy fission considered here. To emphasize this
point, we consider the ensemble of many scission trajec-
tories in Figure 4. The averaged path across the PES
never reaches above the fission barrier around 5 MeV.
The ‘funneling’ that occurs near this saddle point is also
evident with a decrease in variance of the energy along
the path. For the majority of the random walk, the fission
path width is roughly on the order of an MeV. Beyond
the outer saddle the variation in the fission path ranges
several MeV with the most probable fragments generated
by trajectories near the averaged path.

This type of calculation provides an alternative to im-
mersion methods for finding the most interesting PES
features along trajectories [30]. The main limitation of
this procedure is the number of events required to build
sufficient statistics. Figure 4 was constructed with 5000
trajectories. In contrast, the full yields are typically eval-
uated with ten to one hundred times more statistics. In
this procedure, one does not obtain information about
the full shape configuration space, since the calculation
only requires the most commonly traveled PES points
confined to scission trajectories. It can be argued that
this last point is in fact a motivation for using the new
method, since it optimizes the time-consuming PES cal-
culations on the configuration space to only what is ab-
solutely necessary. This procedure may be particularly
useful for fission calculations which do not rely on dis-

cretization of the shape lattice space or pre-calculated
PES.

V. FRAGMENT MASS AND CHARGE YIELDS

We now describe the calculation of the fragment mass,
Y (A), fragment charge, Y (Z), and full fission fragment
yields, Y (Z,A).

A. Mass distribution

The ensemble of scission events such as the one illus-
trated in Fig. 3, is the basis for the creation of the mass
yields, Y (A) for a fissioning system with Z0 protons and
A0 nucleons. We use a geometric property for the calcu-
lation of Y (A). Specifically, for each scission configura-
tion we tally the mass asymmetry, αg, and convert this
quantity to nucleon number, A, via A = A0(1 − |αg|)/2
for the lighter fragment. Due to the symmetry of pri-
mary mass yields, the heavier fragment nucleon number
can be computed via the conservation of nucleon num-
ber. Naturally, this calculation does not produce integral
values of A. We therefore evaluate the yield, Y (αg) us-
ing linear interpolation to construct Y (A). The resultant
fragment yields are over discrete integer values of A and
we normalize such that

∑
Z,A Y (Z,A) = 2, implicitly

assuming that there is no ternary fission. This choice
provides consistency checks on preserving the fissioning
system nucleon, A0 =

∑
Z,A Y (Z,A) × A, and proton,

Z0 =
∑
Z,A Y (Z,A) × Z, numbers. The construction of

the full yield, Y (Z,A), in both mass and charge is dis-
cussed in Sec. V B.

B. Charge distribution

The charge asymmetry is notably absent from the as-
sumed five-dimensional shape degrees of freedom. Our
current calculations therefore only support the calcula-
tion of mass yields, Y (A). This is not a limitation of
the FRLDM model, rather, it comes from an attempt
to save storage space on a computer with the grided ap-
proach to the nuclear PES. An additional shape degree
of freedom could be added to produce the full fragment
yields in both charge and mass, Y (Z,A) [72]. Conversely,
other methods exist in the literature to obtain the split-
ting configurations at scission [73]. We plan to explore
these methods in detail in future work.

For now, we apply the following technique to obtain
the full fragment yields. We assume that the results of
our Markov Chain Monte Carlo provides the mass yield,
Y (A). We use the unchanged charge distribution, which
is a scaling factor, η = Z0/A0, where Z0 and A0 are the
charge and mass of the fissioning nucleus, to translate
between the calculated mass and charge yields, Y (Z).
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FIG. 3. (Color Online) The evolution of the projected potential energy surface for 236
92U along a trajectory starting (a) from

the ground state and continuing towards (b) the saddle point while (c) rattling around the second minimum until (d) scission.
The orange circle denotes the current point in the shape configuration with the black path denoting what has already been
traversed and gray the path still to come. A lack of background shading (white) means unphysical PES value given the other,
fixed, shape coordinates.

Following the procedure of Wahl [19], this description as-
sumes a Gaussian form for the charge yield as a function
of A,

Y (Z|A) =
1√

2πσ2
Z

exp

[
− [Z − Zp(A)]2/2σ2

Z

]
, (33)

where the mean Zp(A) is given by Zp(A) = A × η for
a given fragment mass A. To obtain the full yields we
perform an iterative procedure to determine the variance
parameter, σZ . The variance σZ is determined for each
fission system at a specified excitation energy. We do

not consider the systematics of σZ with excitation en-
ergy in this work as we are evaluating the yields at a
single energy, as discussed in the next section. A trial
full fragment yield Yt(Z,A) = Y (A) × Y (Z|A) is used
with an initial guess for σZ until an appropriate thresh-
old is reached. The fit constraint for σZ satisfies the
minimization of Y (Z) =

∑
A Yt(Z,A). The full fragment

yields are then given by Y (Z,A) = Y (A)×Y (Z|A) using
the optimal σZ .

Figure 5 shows the fragment yield, Y (Z,A), for 236U
calculated with the above procedure. Experimental data
of Refs. [74, 75] are shown for reference in the top panel.
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FIG. 4. (Color Online) The averaged projected potential
energy of 236

92U as a function of elongation for a set of trajec-
tories.

The assumption of unchanged charge distribution is em-
ployed using a value of σZ = 0.435 for this nucleus, lead-
ing to the distribution of daughter fragments in the bot-
tom panel. From the bottom panel, one can draw a single
straight line in the NZ plane that pierces through the
center of the distribution, from bottom left to top right.
In experimental data, an offset is often seen between the
light fragment and heavy fragment lobes in relation to
this line due to charge polarization [76]. Our description
using the Metropolis method to obtain Y (A) does not
include this effect, nor odd-even staggering often seen
in charge yields. Despite this shortcoming, as we shall
see, the method does very well when compared to known
data.

C. Additional model assumptions

With the evolution of the Markov chains and calcu-
lation of the fragment yields described in the previous
sections, we now detail several choices that may have
leverage on the Brownian-shape motion calculations.

1. Starting shape

The starting shape configuration for the random walk
is an open, but critical choice in terms of computational
cost of the yield calculations. Possible starting posi-
tions include the ground state, near the fission isomer-
minimum or beyond the outermost saddle point [50]. For
all nuclei, we chose to start as close to the ground state
as possible given the 3QS shape parameterization. The
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FIG. 5. (Color Online) (a) The primary mass yield of 236U.
(b) The distribution of daughter fragments in the chart of
nuclides given the assumption of unchanged charge distribu-
tion (UCD). Solid black denotes stable nuclei with light gray
showing the extent of bound nuclei using FRDM2012 masses.

reason for this is that we can always isolate this position
in the PES for every nucleus across the chart of nuclides.
The choice of the other starting positions could be dif-
ficult to define, for instance, there may be only a single
saddle point along the fission path or the PES could be
smooth and featureless in the region of moderate elon-
gation, thus making the choice of starting at the fission
isomer-minimum impossible. The choice of starting be-
yond the outermost saddle point is also not without its
problems, as one must artificially produce a spread in
the trajectories, which arises from starting at a more
compact configuration, recall Fig. 4. These issues are
discussed throughout Refs. [50, 53–55].

2. Bias potential

The choice of starting near the ground state configura-
tion is not itself without a drawback. The wall clock time
of the yields becomes substantially longer the closer to
the ground state the calculations are initialized. This un-
fortunate computational circumstance reflects the phys-
ical nature of fission. In previous work, e.g. Ref. [55],
a bias potential was used to speed up the calculation
of the stochastic random walk from the ground state to
roughly the first fission-isomer minimum. For the limited
nuclei studied in the previous work, this was a good as-



11

sumption as most always the maximum saddle point was
the first saddled point encountered in a scission trajec-
tory. However, systems with larger neutron excess may
have more complicated potentials. We have therefore re-
placed the bias potential appearing in previous work with
a quadratic form,

Ebias(Q2) =

Etilt

(
Q2−Qsa

2

Qgs
2 −Qsa

2

)2

Q2 ≤ Qsa
2 ,

0 Q2 > Qsa
2 ,

(34)

where Q2 is the current elongation between the ground
state, Qgs

2 , and maximum saddle, Qsa
2 , and the tilt pa-

rameter, Etilt, is dependent on the height of the maxi-
mum saddle allowing for a smooth connection between
the biased and nuclear potentials. For elongations after
Qsa

2 , the two potentials are exactly equal, resulting in no
modification to a given trajectory after this point. This
functional form serves to reduce the necessary height of
the biased potential, that was in previous works typically
set around 60 MeV, and minimize the variation of trajec-
tories through the maximum saddle point. In this work,
the maximum coefficient of the biased potential consid-
ered for any nucleus is 10 MeV.

The impact of the bias potential is shown in Fig. 6
for four example nuclei. These nuclei were chosen based
off the distinct nature of their mass yields. The nucleus
227
90Th in panel (a) exhibits mostly an asymmetric split

with some tendency for a symmetric split depending on
the exact choice of Etilt. The dependence of the bias
potential here is the strongest amongst the four nuclei
because of the possible opening and closing of the sym-
metric channel. The uranium isotope shown in panel (b)
has no symmetric mode at low excitation energy while
260
101Md in panel (c) shows a preference for asymmetric fis-
sion along with an open symmetric path. An extreme
neutron-rich No isotope, panel (d), with a rather broad
yield displays very little dependence on the bias poten-
tial.

3. End configurations

The random walks continue until reaching a specified
critical neck radius c where the mass partition is assumed
to be frozen in. This happens well before actual scission
where the two emerging fragments are fully formed and
separate. Figure 7 shows the variation in the mass yield
for various values of the critical neck radius. Some nu-
clei exhibit a relatively weak dependence on the neck ra-
dius, as shown in panels (c) and (d). Other nuclei, such
as 227

90Th, show a much stronger dependence that even
shifts the peak of the yield distribution multiple units
in mass number. Mass yields of certain nuclei therefore
may benefit from a variation of this number. However,
it is not instructive to change this number in an ad hoc
manner without physical motivation when considering a
global calculation of mass yields across the chart of nu-
clides. We therefore adopt the critical neck radius to be
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FIG. 6. (Color Online) The impact of the choice of biased
potential for (a) 227

90Th (b) 236
92U (c) 260

101Md and (d) 277
102No. The

coefficient for the biased potential in this work is limited to
Etilt = 10 MeV or less.

c = 2.5 fm as the standard criterion for extracting the
mass yield. This value is based on the result of matching
select yield distributions of major actinides.

4. Nuclear temperature

The random walk depends on the local temperature,
T (χ), appearing in the Metropolis step criterion (32). As
in past work, we relate T to the local excitation energy
E∗ by the simple Fermi-gas relation E∗ = aT 2. Ac-
cordingly, the temperature for a given shape χ is thus
given by T (χ) = [(E − U(χ))/aA]1/2. Thus, the local
temperature is initially relatively large while the shape
explores the region around the ground state, it is smallest
as the shape passes through the barrier region, beyond
which it increases steadily as the system drifts down the
outer barrier. Figure 8 shows mass yields calculated for
various constant values of the temperature. This simple
example illustrates the importance of the nuclear tem-
perature in determining the fragment yields. More recent
treatments, e.g. that of Ward et al. [77], have refined the
treatment of the shape evolution by employing shape-
dependent microscopic level densities, which account for
pairing correlations and shell effects.
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FIG. 8. (Color Online) Mass yields calculated for various
constant values of the temperature, T = 0.5, 1.0, 1.5 MeV, for
227
90Th (a), 236

92U (b), 260
101Md (c), and 277

102No (d). Also shown
are the yields obtained by calculating the local temperature
on the basis of the macroscopic potential alone.

5. Excitation energy

The nuclear shape evolution depends on the total en-
ergy of the system, E, which in turn depends on how
the fissioning nucleus is being prepared. For low-energy
neutron-induced fission, the initial compound nucleus is
the result of the target nucleus absorbing a neutron. If
the incident neutron has kinetic energy ε, the resulting
compound nucleus excitation energy is E0∗ = Sn + ε,
where Sn is its neutron separation energy, and the total
energy is E = E∗0 +M0c

2, where M0 is the ground-state
mass of the compound nucleus. Many measurements
have shown that fission yields are energy dependent [78–
82]. For the major actinides, an increase of the excita-
tion energy leads to an gradual change from asymmetric
to symmetric fission. This general feature is a result of
the fact that the microscopic (shell and pairing) effects
diminish as the temperature grows. Recalling Fig. 8, we
can interpret the higher constant temperature evolutions
as washing out the shell effects. Our calculations uti-
lize the shell suppression term, S, to estimate the energy
dependence of fragment yields as in Ref. [54].

To provide a complete set of yields across the chart of
nuclides, we set the excitation energy as close as possible
to the maximum saddle height. An additional amount of
excitation energy, ranging from 0− 2 MeV, is needed for
some nuclei to achieve sufficient statistics. With this ini-
tial excitation energy we can roughly approximate near-
thermal incident neutron energies for the actinides. For
nuclei with extreme neutron-excess, this choice may pro-
duce excitation energies that tend to be rather high for
neutron-induced fission and rather low for β-delayed fis-
sion. It is therefore important to note that the calculated
fission yields exhibit a rather weak energy dependence
in the range of astrophysical interest. Thus, for low-
energy applications that include those in astrophysics,
this choice of excitation energy appears to be suitable.
On the other hand, because we consider energies above
the fission barrier and cannot enter the classically for-
bidden regions, the calculated fragment yields may not
be appropriate for spontaneous fission. Future work will
study the systematics of our fission yields as a function
of excitation energy across the chart of nuclides.

6. Space discretization

We end this section by revisiting the notion of the dis-
cretization of the shape configuration space. The lattice
structure used in the present work has been introduced
at the end of Sec. II. This grid consists of a uniform tes-
sellation of the canonical shape degrees of freedom with
unique spacing in each of these parameters. The origi-
nal motivation for introducing a lattice structure was to
minimize the computer storage required, which is sub-
stantial when thousands of nuclei are being considered.
The specific choice of lattice does, however, play a role for
both the computational effort required and the physical
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FIG. 9. (Color Online) (a) A uniform tessellation versus a
(b) non-uniform tessellation of the plane given two coordinate
variables. Both methods are applicable to nuclear potential-
energy surfaces so long as the notion of distance, dij , between
different configurations is well defined.

assumptions made when performing a Metropolis proce-
dure using a discrete random walk.

If the grid is too dense it may take many steps to pro-
ceed in a given direction relative to another, while offer-
ing little to no improvement in predictive capability. In
our case, one variable that could benefit from grid refine-
ment would be the mass asymmetry, αg, whose step size
controls the mass resolution when using the macroscopic
nuclear geometry condition for scission. On the other
hand, sparsity of lattice spacing for a given variable may
cause a miss of important features and could prevent the
Metropolis procedure from ever selecting the step if the
corresponding jump in the potential is too high. It is clear
that a proper notion of distance, dij , between lattice sites
is needed when considering the tessellation of the nuclear
PES, as illustrated in Fig. 9. Non-uniform tessellations,
such as those constructed by a Voronoi diagram or De-
launay triangulation, are useful for constraining the pa-
rameter space to physically relevant points with variable
grid density. This method coupled with the technique
discussed at the end of Sec. IV C could have significant
ramifications for the computational tractability of fission.

Another aspect of using a discrete random walk is
that, inherently, the choice of relative lattice step sizing
encodes a principal physical assumption regarding the
isotropic nature of the mobility tensor. In our case, the
particular griding results in equal probability for being
the next candidate step in the random walk, as discussed

by Randrup and colleagues [53]. It is important to re-
member in a discretized approach, such as the one im-
plemented here, the likelihood of movement between two
lattice sites is distinct from the candidate shape choice
probability. The probability of movement between two
lattice sites is controlled by the Metropolis procedure
and dependent on the difference in potential energy of
the two sites. For the next lattice candidate there are
three choices for each canonical shape degree of freedom:
to remain at the same location, to move forward in the
grid to the nearest neighbor, or to move backward to a
grid point with lower index. With five shape degrees of
freedom, this results in 35−1 = 242 equally possible can-
didate points for the current step in the random walk,
where the possibility of staying at the exact same grid
point has been removed. Previous studies have shown
that the exact choice of the candidate shape choice prob-
ability has a minor impact on the calculations [50, 53, 55].
Studies that commission a continuous shape space, for
example, those based off Smoluchowski or Langevin, by-
pass these considerations all together as they remove the
direct dependence on the candidate shape choice proba-
bility.

In summary, when using a discretization approach a
balance must be struck between adequate tessellation,
physical assumptions, and computational tractability.
The adopted lattice reasonably satisfies all of these con-
siderations. The study of non-uniform tessellation pro-
cedures will be the subject of future work.

VI. RESULTS

We begin the discussion of our results by starting with
a comparison of our yield calculations to relevant data of
several actinides. We follow with a study of the global
trends that arise in the fragment yields across the chart
of nuclides.

A. Comparison of yields with data

We benchmark our Discrete Random Walk (DRW)
code (version 1.0) with comparison to experimental data.
Caution must be issued here as model output is not ex-
actly a one-to-one comparison with experiment nor eval-
uation. It is so-called independent fission product data
(i.e. after prompt neutron and γ-ray emission) that is
generally measured in an experiment, due to the fast
timescale of prompt particle emission. Often times, this
data is transformed back to a state of fragment mass
yields (prior to prompt particle emission) which is suit-
able for comparison with the output of our random walk
with the caveat that a model has been used to construct
such data.

One could imagine comparing product mass yields di-
rectly, however, this introduces several more theoretical
models in calculating the de-excitation of the nascent
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fragments [83–85]. Chiefly among the concerns is the
calculation of average fragment kinetic energy and the
degree of excitation energy of each individual fragment
which significantly affect the number of neutrons evapo-
rated and hence the mass number of the resulting prod-
uct nucleus. Current fission event generators obtain
these quantities from phenomenological parameteriza-
tions [86, 87]. A comparison of charge yields would not
suffer from this problem because the neutron emission
leaves the charge number unaffected. But the charge
yields exhibit significant odd-even staggering and this
effect has not yet been included in current shape evo-
lution treatments which provide charge yields by a sim-
ple rescaling of the mass yields. An additional prob-
lem arises due to the high excitation energies associated
with such experiments that may open multi-chance fis-
sion channels [88]. Other experimental setups that ascer-
tain charge yields may have low resolution of the excita-
tion energy, resulting in yields that depend on a spread of
energies [89]. For a review of experimental fission meth-
ods see Ref. [90]. With these caveats established, we
proceed with comparing fragment yields in both charge
and mass.

Figure 10 compares the calculated mass yields to mea-
sured yields for several (nth,f) cases. The data for these
comparisons can be found from (a) Ref. [91] (b) Ref. [80]
(c) Ref. [92] and (d) Ref. [91]. For these actinides, the
mass yields are asymmetric. The positions of the asym-
metric peaks are reproduced to a satisfactory degree. The
widths of the distributions are also well reproduced, ex-
cept for the last case where the peaks come out somewhat
too wide.

Several years ago, the Metroplos-walk method was
successfully benchmarked against 70 measured fragment
charge yields in Ref. [55]. To demonstrate that the
present slightly modified treatment does equally well, we
show in Fig. 11 similar comparisons for eight typical cases
selected from the entire range. The agreement with the
experimental data across this range is remarkable. In
particular, the calculations reproduce the transition from
symmetric fission below Z ∼ 90 to asymmetric fission
above Z ∼ 90. The experimental conditions were such
that a range of excitation energies are combined and the
calculations were carried out using the reported average
excitation, E∗ ≈ 11 MeV. At these energies the pairing
effects giving rise to an odd-even staggering in the charge
yields have been largely been damped out and are still
visible in only a few of the cases. Further comparisons
of calculated fragment yields to experimental data have
been made in previous work [52–55]. More recent com-
parisons of independent yields have also been undertaken
for some actinides [7, 94].

Here we add several comparisons for nuclei with Z =
100, shown in Fig. 12. The nuclei are so short-lived that
only spontaneous fission can be observed, whereas the
calculations were carried out at excitations within 2 MeV
above the barrier. The two fermium cases, 256,258Fm,
are well-known examples where model calculations devi-

ate from experimental data [98–100]. The origin of this
transition has long been debated [101, 102]. Improve-
ments to model calculations can be made by increasing
the smoothing range of the Strutinsky shell-correction
procedure [103, 104] or by applying Langevin dynamics
[105].

B. Global mass yield trends

Understanding the trends of fission yields across the
chart of nuclides is of particular interest to the astro-
physical r-process of nucleosynthesis [106, 107]. To this
end, we introduce in what follows three key metrics to
classify a given mass yield, Y (A).
1: Number of peaks, Np. The fission fragment mass

number distribution Y (A) is always symmetric around
the midpoint, 1

2A0, due to nucleon number conservation
AL +AH = A0, but it may exhibit any number of peaks.
Purely symmetric fission leads to a single centrally lo-
cated peak, while single-mode asymmetric fission leads
to two peaks located at opposite sides of the midpoint.
Bimodal fission also occurs. For example, 226Th(n,f) ex-
hibits both symmetric and asymmetric components (with
comparable peak heights), 235U(n,f) has two nearly co-
inciding asymmetric components, in addition to an in-
creasingly prominent symmetric component as the en-
ergy is increased, and some nuclei are predicted to have
two widely different asymmetric components. In order
to assign the value of the peak index Np, we proceed as
follows. (1) We first spline interpolate the Y (A) curve,
creating Ys(A), to smooth out any minor bumps that may
exist which can be misinterpreted as a peak. (2) Next,
we count the maxima by computing the first derivative,
Ẏs(A) = 0 and second derivative Ÿs(A) < 0. (3) Since
large features are typically spread out in A, we prevent
the algorithm from finding major peaks within 10 mass
units of another feature. The procedure yields a reason-
able result for most nuclei, but when there are several
subtle inflections in the yield curve it may lead to a too
high value ofNp. Fortunately, this problem is limited to a
relatively small subset of the nuclei under consideration.
2: Degree of asymmetry, Sf. A second property

of the mass yield curve is the degree of asymmetry, Sf.
This quantity indicates how many units the mass num-
ber of the maximum in the mass yield, Amax differs from
symmetry, Sf = |Amax − 1

2A0|. Because we are consider-
ing primary fragment yields, we can use either the heavy
or light fragment mass peak. Super-asymmetric mass
yields will have large values of Sf, while those centered
at 1

2A0 will have Sf = 0. For example, Sf(
236U) = 18

and Sf(
240Pu) = 17.

3: Overall width, Wd. A third useful characteristic
of a mass yield Y (A) is its overall width, Wd. The calcu-
lation of this quantity requires some care. The full width
at half maximum (FWHM) is useful only for single-peak
distributions, while the standard definition of FWHM
may not yield meaningful results for multi-peak yield
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FIG. 10. (Color Online) Comparisons of our model mass fragment yield predictions (red) with experimental data (gray).
Experimental data (respectively: [91], [92], [80], [91]) has been interpolated and normalized to compare with predictions.
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FIG. 11. (Color Online) Comparisons of our model charge yield predictions (red) with experimental data (gray) from the
thesis of S. Steinhäuser [93]a. Excitation energy quoted as 11 MeV.

a Thesis may be downloaded at https://www-win.gsi.de/charms/theses.htm

functions. We therefore employ a simple definition of
the width, Wd =

∑
A θ(Y (A) − 0.01), i.e. the width is

the number of A values for which Y (A) exceeds 0.01.
Thus, the larger the value of Wd is, the more spread
out is the mass yield. For example, Wd(236U) = 40
and Wd(240Pu) = 48, while very heavy nuclei may have
Wd > 100. Values above 100 are attainable because the
yield is normalized to two,

∑
A Y (A) = 2.

An overall impression of the calculated mass yields can
be gained from Fig. 13 showing the three classification
metrics for each nucleus in the NZ region considered. A
striking structure emerges as one moves across the nu-
clear chart and we now discuss several particularly inter-
esting features.

An inspection of the number of yield peaks, shown in
panel (a), suggests that the bulk of the nuclei situated
between N ≈ 140 and N ≈ 180 undergo asymmetric fis-

sion. This is confirmed by comparison with the degree of
asymmetry, shown in panel (b). The width of these yield
functions tends to grow with both increasing Z and N .
The reason for this comes from a preferential flattening
of the potential energy surfaces after the last saddle point
as more nucleons are put into the system. This in turn
spreads our random walk calculations in the asymmetry
coordinate, making a wide range of splitting configura-
tions comparatively favorable.

A transition from predominantly asymmetric to pre-
dominantly symmetric yields occurs around N ≈ 170 for
Z ≈ 90. This region is of interest for β-delayed and
neutron-induced fission channels in nucleosynthesis sim-
ulations of the r process [108, 109]. We find a diverse
set of mass yields in this region, especially for Z ≈ 85 to
Z ≈ 95 and N ≈ 170 to N ≈ 190. One consistent feature
of these mass yields is that they are all relatively wide

https://www-win.gsi.de/charms/theses.htm
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FIG. 12. (Color Online) Comparisons of our model mass
fragment yield predictions (red) with the JENDL-4.0 evalua-
tion of independent yields [95, 96] (top panel) and experiment
[97] (bottom panel) for the sharp transition between the asym-
metric distribution of (a) 256Fm and symmetric distribution
of (b) 258Fm.

with Wd ≈ 70 (whereas major actinides typically have
Wd ≈ 45). Thus, the exact division into an asymmet-
ric or symmetric fission branch could be less important
for r-process simulations as these features will be washed
out due to the wide nature of the fragment yields. The
yields with the largest width, Wd & 100, in our model
occur near A ∼ 315.

In early liquid drop-based theoretical studies of fission
it was suggested that a correlation exists between the
mass asymmetry and the parameter Z2

0/A0 [110]. The
variation in panel (b) of Fig. 13 clearly dispels this sug-

gestion, showing that across the chart of nuclides, the de-
tails of microscopic effects are more important in shaping
the yield functions.

In Fig. 14 we show the placement of the peak of the
fragment distribution in A for either the symmetric or
heavy fragment peak. Generally, this quantity is increas-
ing with notable exception when yields transition from
symmetric to asymmetric or vice versa.

C. Fission Q-values

Effective fission Q-values may be estimated from the
fragment yields via the relation,

Qfiss ≈M∗(Z0, A0)−
∑
Z,A

Y (Z,A)M(Z,A) , (35)

where M∗(Z0, A0) is the mass of the fissioning nucleus
(including excitation energy), M(Z,A) is the mass of a
fragment , and Y (Z,A) the yield of this fragment species.
This relation is exact for spontaneous fission, when the
nucleus is not excited and fission occurs in the ground
state. It is only slightly modified for neutron-induced or
β-delayed fission due to the existence of additional par-
ticles or change in target (parent) nucleus. Figure 15
shows this effective fission Q-value along isotopic chains
where the fragment yields have been calculated. The flat
trend along each isotopic chain indicates that the depen-
dence of N0 is rather weak, while the spacing between
the isotopic chains reveals a stronger dependence on Z0.
A sudden jump along an isotopic chain may arise when
a yield function exhibits a substantial change relative to
those of the neighboring isotopes. For this calculation,
the nuclear binding energies were obtained from the lat-
est (2012) version of FRDM [57, 65].

VII. SUMMARY

We have used the well established Finite-Range Liquid-
Drop Model (FRLDM) to explore fission fragment yields
across the chart of nuclides bounded by the region be-
tween 80 ≤ Z ≤ 130 and A ≤ 330. The fragment yield
of each fissioning system are calculated using a discrete
random walk across a static potential energy surface un-
der the assumption of strong dissipation. Our procedure
produces over 3800 fission yields at excitation energies
suitable for possible applications of neutron-induced and
β-delayed fission. We find that individual fragment yields
exhibit a prominent behavior with both the mass (A0)
and charge (Z0) of the fissioning system, indicating the
importance of including microscopic effects in the calcu-
lation of this quantity. The size of fragment distributions
show a propensity to expand with increasing neutron-
excess of the fissioning system. For these super-heavy
systems, the difference between splitting symmetrically
versus asymmetrically is not as crucial as the spread of
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fragments across a large mass region in the NZ-plane.
This result is likely to have significant consequences for
the formation of the heavy elements in the astrophysical
rapid neutron capture process. Our yields also permit
the estimation of fission Q-values across the chart of nu-
clides. A visible flat trend arises across isotopic chains
indicating a primary dependence on the charge of fission-
ing system. The authors look forward to the use of these
yields in applications including the study of astrophysical
phenomena and note that further model enhancements of
FRLDM are underway at Los Alamos that seek to im-
prove the microscopic description of fission.
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Appendix A: Supplemental data

We provide the calculated fragment yields in individual
ASCII formatted files. The ASCII filenames list the pro-
ton number, Z0, and nucleon number, A0 of the fission-
ing system. Therefore, for use in neutron-induced fission,
the target nucleus would be (Z0,A0−1). When using the
yields for β-delayed fission, the parent is (Z0 − 1,A0).

The ASCII files themselves are formatted in three
columns: fragment proton number (Z), fragment nu-
cleon number (A) and fragment yield Y (Z,A). The
yields are on an integer grid and normalized such that∑
Z,A Y (Z,A) = 2, providing consistency checks for

preservation of the fissioning system nucleon, A0 =∑
Z,A Y (Z,A)×A, and proton, Z0 =

∑
Z,A Y (Z,A)×Z,

numbers. Additional FRLDM-based calculations, for in-
stance, yields at a given excitation energy, are available
by request.
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[53] J. Randrup, P. Möller, and A. J. Sierk. Fission-fragment
mass distributions from strongly damped shape evolu-
tion. Phys. Rev. C, 84(3):034613, September 2011.
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[55] P. Möller and J. Randrup. Calculated fission-fragment
yield systematics in the region 74 ≤Z ≤94 and 90 ≤N
≤150. Phys. Rev. C, 91(4):044316, April 2015.

[56] James Rayford Nix. Further studies in the liquid-drop
theory on nuclear fission. Nuclear Physics A, 130(2):241
– 292, 1969.
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Fission in r-process Nucleosynthesis. ApJ, 869:14, De-
cember 2018.

[109] N. Vassh, R. Vogt, R. Surman, J. Randrup, T. M.
Sprouse, M. R. Mumpower, P. Jaffke, D. Shaw, E. M.
Holmbeck, Y. Zhu, and G. C. McLaughlin. Using
excitation-energy dependent fission yields to identify
key fissioning nuclei in r-process nucleosynthesis. Jour-
nal of Physics G Nuclear Physics, 46(6):065202, June
2019.

[110] W. J. Swiatecki. Systematics of Fission Asymmetry.
Physical Review, 100:936–937, November 1955.


	Primary fission fragment mass yields across the chart of nuclides
	Abstract
	I Introduction
	II Nuclear shapes
	III Potential-energy surfaces
	A Macroscopic energy
	B Microscopic energy
	C Typical features of potential-energy surfaces

	IV Shape evolution
	A Strongly damped limit
	B Brownian motion on the shape lattice
	C Features of the shape evolution

	V Fragment mass and charge yields
	A Mass distribution
	B Charge distribution
	C Additional model assumptions
	1 Starting shape
	2 Bias potential
	3 End configurations
	4 Nuclear temperature
	5 Excitation energy
	6 Space discretization


	VI Results
	A Comparison of yields with data
	B Global mass yield trends
	C Fission Q-values

	VII Summary
	 Acknowledgments
	A Supplemental data
	 References


