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Predicting nuclear masses is a longstanding challenge. One path forward is machine learning
(ML) which trains on experimental data, but can suffer large errors when extrapolating toward
neutron-rich species. In nature, such masses shape observables for the rapid neutron capture pro-
cess (r-process), which in principle could inform ML models. Here we introduce a multi-objective
optimization approach using the Pareto Front algorithm. We show that this technique, capable of
identifying models which generate r-process abundances aligning with both Solar and stellar data,
is a promising method to select ML models with reliable extrapolation power.

INTRODUCTION

The nuclear mass is the fundamental ground state
property of a nuclear species. Predicting exactly how
masses evolve for species away from the valley of stability
remains one of the key unanswered questions of modern
nuclear physics [1]. Experimentally, there has been im-
pressive progress in approaching exotic nuclear species in
rare isotope facilities [2–5]. In cases where experimental
data is lacking, nuclear physics models are employed to
predict the properties of unmeasured nuclei [6].

Several theoretical approaches, including phenomeno-
logical and macroscopic-microscopic models, are used to
predict nuclear masses [7–10]. While these models gen-
erally agree well in regions where experimental data is
available, they diverge significantly in extrapolated re-
gions. With advancements in computing power, many
machine learning (ML) algorithms have been increas-
ingly applied to model and extrapolate nuclear masses far
from stability [11–15]. The advantage of ML models lies
in their data-driven nature, enabling global optimization
of residuals for highly precise predictions. Furthermore,
ML models can quantify prediction uncertainties, offering
valuable insights into the reliability of predictions in un-
explored regions. Additionally, training a new ML-based
model is significantly faster than developing a classical
model (which is subject to both limitations in computa-
tional expense and physical assumptions), enabling the
rapid generation of data using state-of-the-art techniques
and architectures.

In order to evaluate a nuclear mass model, one ap-
proach is to compare its predictions with available exper-
imental measurements. Among the approximately 9000
nuclei theorized to exist, experimental masses are avail-
able for only about 2500 [16]. As a result, generating a
model that describes measured data well does not im-
ply well-behaved extrapolations to unmeasured regions,
particularly for neutron-rich nuclei far from stability.

While the vast majority of exotic neutron-rich nuclear
species have not been produced in the laboratory, they
are accessed in nature through rapid neutron capture (r)
process nucleosynthesis. In the r process, a sequence of
rapid neutron captures and beta decays builds increas-
ingly heavy nuclei along a nucleosynthesis avenue that
runs roughly parallel to the valley of stability on the
neutron-rich side. The temperature and density con-
ditions are expected to be sufficiently extreme to re-
sult in an equilibrium between neutron captures and
photodissociations—(n,γ)-(γ,n) equilibrium—where the
abundances along an isotopic chain are set by a Saha
equation that depends exponentially on the nuclear mass
differences. Therefore, observed r-process abundances,
shaped by the properties of nuclei beyond experimental
reach in extreme astrophysical environments, can provide
a critical constraint in this context because they encode
rich information about the underlying nuclear physics.
Using predicted nuclear masses in r-process simulations,
therefore, serves as a powerful method to test and quan-
tify the quality of these extrapolations [17]. This ap-
proach connects theoretical mass models to astrophysical
observables, offering insight into the behavior of nuclei in
the most neutron-rich conditions.

To identify nuclear mass models that not only accu-
rately reproduce experimental data but also offer reliable
extrapolations, this work presents the first application of
a multi-objective optimization algorithm to select suit-
able ML-based nuclear mass models. In this letter, we
first introduce the Pareto Front (PF) optimization algo-
rithm, followed by a discussion of the training process
for the ML mass models and their impact on r-process
simulations. Then, we explore the application of the PF
algorithm in selecting mass models. Finally, we compare
the properties of the selected models with those from the
larger set of models and provide our concluding remarks.
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METHOD

The PF algorithm is a method for addressing multi-
objective optimization problems, where multiple, poten-
tially conflicting, conditions must be optimized simul-
taneously. Instead of reducing the solution to a single
best option, the PF algorithm identifies a set of Pareto-
optimal solutions, each representing a trade-off between
the objectives. Solutions on the Pareto Front are consid-
ered optimal because no other solution can improve one
objective without compromising another [18]. Formally,
a decision vector u⃗ is said to Pareto-dominate another
vector v⃗ if and only if:
1. u⃗ is at least as good as v⃗ in all objectives:

∀i ∈ {1, . . . , N}, fi(u⃗) ≤ fi(v⃗) (1)

2. u⃗ is strictly better than v⃗ in at least one objective:

∃j ∈ {1, . . . , N} : fj(u⃗) < fj(v⃗) (2)

To apply this method to ML-based mass model selec-
tion, each vector represents the predicted masses across
the entire nuclear chart. In this work, we define three
objective functions. The first (f1) evaluates the model’s
accuracy in predicting experimental nuclear masses. The
second (f2) assesses its ability to reproduce solar r-
process isobaric abundances, while the third (f3) mea-
sures its ability to replicate observed stellar elemental
r-process abundances.

When training ML nuclear mass models, similar to our
previous work [14], we utilize the Mixture Density Net-
work (MDN) framework [19] to predict nuclear masses,
with input data being a hybrid of experimental and the-
oretical values in regions devoid of measurements. Rec-
ognizing that training outcomes are influenced by fac-
tors such as the choice of training samples, input feature
space, and neural network architecture, we generate a
diverse pool of ML mass models by varying these param-
eters while ensuring uniform training durations for all
models.

Building on insights from earlier studies, which recog-
nized the critical role of mass differences when linking
masses and r-process abundances [20, 21], we enhance
the training process by incorporating mass differences,
such as neutron separation energies, as supplementary
constraints to train the mass models. This modification
is designed to improve the models’ extrapolation ability
to reproduce physical trends, and overall predictive per-
formance.

When each ML mass model is well trained, its pre-
dictions are used to simulate r-process nucleosynthesis.
Specifically, we calculate the neutron separation energy
(Sn) for all nuclei using the new mass data, which di-
rectly influences photodissociation rates via detailed bal-
ance, playing a critical role in the r-process [22, 23]. The
calculated Sn are then input into the nuclear network

code PRISM [24] to perform the calculation. For all re-
action rates, we employ a combination of experimental
data (when available) and theory calculations [25–28] to
ensure comprehensive data coverage of the nuclear chart.
After obtaining each mass model and applying it to the
r-process simulations, we calculate the root-mean-square
(RMS) error and χ2 error of the mass model relative to
AME2020 dataset [29] to assess its predictive power by
using the following equations:

σRMS =

√
1

N

∑
i

(ti − di)2 (3)

and

χ2 =
∑
i

(ti − di)
2

σ2
i

(4)

Here, ti represents the atomic mass predicted by
the ML model, di denotes the atomic mass from the
AME2020 dataset, and σi corresponds to the uncertainty
associated with each experimental atomic mass. The cal-
culated χ2 for masses serves as the first objective func-
tion, f1. Next, we compute the χ2 errors using Eq. (4) for
the simulated isobaric abundances Y (A), with A larger
than 120, relative to solar data [30] and elemental abun-
dances Y (Z), with Z ranging from 56 to 79 to cover
the main r-process elements, relative to a metal-poor r-
process-enhanced halo star HD 222925 that has a nearly
complete r-process chemical inventory [31]. These two
quantities serve as the second and third objective func-
tions, f2 and f3, respectively. Here, ti represents the
simulated isobaric or elemental abundances obtained us-
ing each ML mass model, di denotes the corresponding
solar or stellar abundances, and σi is the observed uncer-
tainty in the abundances. Thus, each ML mass model is
characterized by three unique properties: χ2 values for
masses, Y (A), and Y (Z). During the optimization pro-
cess, we evaluate the performance of each model across
these three objectives using our PF algorithm.

RESULTS

Comparing the properties of different ML mass
models

As a first step, we generate ML mass models for use
in our PF analysis. The performance of these models
in reproducing AME masses and solar r-process isotopic
abundances are shown in Fig. 1. The upper panel dis-
plays the RMS error relative to the AME2020 database.
As described in the method section, there are two dif-
ferent categories of ML mass models: those trained with
and without mass differences as additional constraints.
The grey distribution represents MDN models that were
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trained without incorporating mass differences as con-
straints. In total, 600 mass models were trained, each
differing in hyper-parameters as described in our previ-
ous work [17]. The RMS error ranges from 0.18 to 0.5
MeV, which is comparable to other mass models in the
literature, indicating the success of these models in pre-
dicting experimentally available masses.

The RMS errors for MDN models trained with mass
differences are shown in green. Here, in total 200 models
were trained, each differing in hyper-parameters and the
specific mass differences used (e.g., one-neutron separa-
tion energies Sn, β

−-decay energies Qβ , α-decay energies
Qα, among others). This set of 200 gives RMS mass
deviations ranging from 0.25 to 0.48. It is evident that
the distribution range of ML models without mass differ-
ences in the training exhibits a wider spread compared
to those trained with mass differences. This indicates
greater uncertainty in models trained without mass dif-
ferences as additional constraints. While some models
trained without mass differences achieve lower RMS val-
ues, suggesting a good match to the available data near
stability, these cases do not necessarily preserve expected
mass difference trends away from stability. This under-
scores the need for an evaluation of the model’s perfor-
mance beyond matching existing data.

Figure 1. The upper panel shows the distribution of the
RMS for all well-trained mass models, with green and grey
squares representing MDN models trained with and without
mass differences, respectively. The lower panel displays the
corresponding simulated r-process abundance patterns under
a hot wind condition, compared to solar residuals from [30].

To further investigate which models provide more re-
liable extrapolations for neutron-rich nuclei, we apply

these models to r-process simulations, which can serve to
inform mass predictions in the absence of experimental
data. The resulting abundance patterns calculated with
hot wind conditions [32] are shown in the lower panel of
Fig. 1. Green and grey lines represent the abundance
patterns from MDN models trained with and without
mass differences, respectively. The narrower green band,
with distinct and consistent r-process characteristic fea-
tures, compared to the wider grey band, highlights the
constraining power that introducing mass differences in
training can provide, particularly in informing extrapo-
lations outside of measured data.

PF algorithm in constraining ML mass models

The previous section demonstrates the advantage of
incorporating mass differences when training the MDN
models. Here we describe how r-process simulations are
used to provide additional constraints on our ML mod-
els, to ensure that the extrapolated masses are physical.
Among the 200 well-trained models, to select the most
robust and predictive ones, we apply them to a broader
set of r-process calculations. We employ a set of 10 rep-
resentative trajectories from a simulation of neutron-star
merger disk ejecta [33], covering a range of neutron-rich
conditions. The normalized r-process abundances Y (A)
and Y (Z) are calculated for each simulation using differ-
ent mass models. By comparing Y (A) to solar data [30]
and Y(Z) to stellar data [31], we obtain the χ2 Y (A) and
χ2 Y (Z) values for each simulation. As a result, each
MDN model has three distinct properties: χ2 masses, χ2

Y (A), and χ2 Y (Z).
To choose those with low χ2 mass values and producing

the r-process patterns most in line with Solar and stel-
lar data, we employ the PF algorithm for multi-objective
optimization. Fig. 2 presents the χ2 values for each
MDN model, shown as green squares. The PF algorithm
selects models with low values in any of the three objec-
tives, represented by pink squares. Since we are using
three objectives to describe each MDN mass model, the
Pareto front set forms a curved 2D surface within a 3D
space, which can be found at our OSF page [34]. Fig. 2
shows 2D projections of this 3D space: the left panel
plots χ2 masses against χ2 Y (A), and the right panel
plots χ2 Y (Z) against χ2 Y (A). Both projections clearly
indicate that the PF set occupies the lower left corner of
the plots, demonstrating that the selected models have
lower χ2 values for masses, Y (A), and Y (Z). These se-
lected models balance the three metrics so that there is
no one metric considered to be optimal among others;
together, they outperform the remaining MDN models.

Fig. 3 presents a distribution of abundance patterns
with Y (A) shown on the top panel and Y (Z) on the
bottom panel. It is evident from the upper panel that
the general isobaric abundance patterns are aligned well
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Figure 2. The left panel shows the models’ properties of χ2

masses vs. χ2 Y (A) with the green and pink squared standing
from the MDN model with mass difference in training and
the PF set. The right panel show the models’ properties of
χ2 Y (Z) vs. χ2 Y (A).

with the solar pattern, with the characteristic peaks posi-
tioned appropriately, indicating reasonable atomic mass
extrapolations for neutron-rich nuclei. It is worth noting
that the variations in the abundance distributions are not
uniform across different mass numbers. Except for some
outliers in the second (A ≈ 130) and third (A ≈ 195)
peak region, the variations in the deformed nuclei and af-
ter the third peak region are greater than other regions,
indicating the larger variation in atomic mass extrapola-
tions related to the formation of these nuclei. A similar
phenomenon is observed in the lower panel, which shows
the distribution of the elemental abundances.

To compare the abundance patterns between the PF-
selected models and the MDN models, the upper panel
of Fig. 3 illustrates the isobaric abundance patterns for
both model sets, with the MDN models depicted by green
lines and the PF models by pink lines.

The wider spread of the abundances in MDN models
indicates larger variability in the mass predictions, par-
ticularly in the extrapolated region. In contrast, the nar-
rower spread of the abundances in PF models underscores
the algorithm’s effectiveness in selecting models with im-
proved extrapolation capabilities for neutron-rich nuclei.
This suggests that the PF algorithm effectively helps the
model selection process, yielding more physically plausi-
ble results. A similar feature is observed in the elemen-
tal abundance distributions shown in the lower panel,
where the PF models exhibit tighter distributions, fur-
ther demonstrating the algorithm’s capacity to produce
more reasonable abundance patterns.

PF algorithm in constraining neutron separation
energies

Another quantity that can be used to gauge the quality
of extrapolations is one-neutron separation energy (Sn).
Not only is it an important quantity relevant to closed-

Figure 3. The upper panel shows the distribution of the sim-
ulated isobaric abundances for all the MDN models (green
lines) and the Pareto front set (pink lines), while the lower
panel presents elemental abundances for all different mod-
els. The black crosses are the solar r-process residuals [30],
while the black triangles are data from a metal-poor r-process-
enhanced halo star HD222925 [31].

shell signatures, pairing effects, and the boundaries of the
nuclear landscape, it also sets the equilibrium r-process
path through the calculation of the photo-dissociation
rate via detailed balance. Accurate extrapolation of sep-
aration energies is vital for both nuclear physics and as-
trophysical applications. Key features of neutron sepa-
ration energies include a decreasing trend along an iso-
topic chain as isotopes become more neutron-rich and
an odd-even staggering effect observed between isotopes
with odd and even neutron numbers.

To assess the quality of the Sn extrapolation between
the general MDN models and those selected by the PF
algorithm, Fig. 4 presents the Sn values for the Tin iso-
topic chain as an example. The distribution of Sn values
from the MDN models without and with mass difference
as an additional constraint are shown in grey and green
bands, respectively. In the experimentally-known region,
these distributions nearly overlap with minimal varia-
tion, which is expected given their low root-mean-square
(RMS) deviations relative to AME2020. However, as the
neutron number increases toward the drip line, incorpo-
rating mass differences in training significantly constrains
the extrapolation, narrowing down the deviations.

The PF-selected models, represented by pink lines,
show an additional improvement in the extrapolated val-
ues. These models exhibit a clear odd-even staggering ef-
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fect up to and beyond the neutron drip line. In contrast,
many of the models constrained only by mass differences,
shown in the green band, lose this property. Notably,
similar constraints are also effective on the proton-rich
side when the neutron number is less than 50, where
we observe a progressive narrowing from the broad gray
band to green, and further to pink. This demonstrates
that the PF algorithm effectively selects ML mass mod-
els that preserve physically meaningful extrapolations,
maintaining both the expected decreasing trend and odd-
even effects. This behavior is consistently observed across
all isotopic chains, with this case serving as a represen-
tative example.

Figure 4. The grey and green bands show the distribution
of one neutron separation energies (Sn) in the Tin (Z = 50)
isotopic chain calculated with MDN mass models without and
with mass difference constraints, respectively, while the pink
lines highlight the calculated Sn in the PF set. The dashed
horizontal grey line shows the neutron drip line (Sn = 0).

CONCLUSION AND DISCUSSION

In conclusion, we have demonstrated that incorporat-
ing mass differences as additional constraints in the train-
ing of ML nuclear mass models maintains their predic-
tive accuracy and enhances their ability to make physi-
cally meaningful extrapolations across the nuclear chart.
This improvement is evident in the simulated r-process
abundance patterns. Utilizing MDN models trained
with mass difference and the corresponding simulated r-
process abundance patterns, we applied the PF algorithm
to select mass models that exhibit lower χ2 values across
three key metrics: nuclear masses, isobaric abundances
Y (A), and elemental abundances Y (Z). The models cho-
sen by the PF algorithm produce narrower distributions
of RMS values and r-process abundance patterns, reflect-
ing more refined predictions, especially in challenging re-

gions of the nuclear landscape, such as deformed nuclei
and those near the neutron drip line. Furthermore, the
improvement in the predictive power of extrapolations
is also demonstrated in the accurate reproduction of key
nuclear properties such as the one-neutron separation en-
ergies.

This study marks the first application of the PF algo-
rithm to constrain ML nuclear mass models using both
experimental mass data and r-process observables, high-
lighting its potential as a robust tool for model selection.
The multi-objective optimization framework provided by
the PF algorithm is versatile and can be extended to
any physical models characterized by multiple compet-
ing properties. This could include applications in other
areas of nuclear physics, astrophysics, and beyond, where
selecting models across multiple criteria is necessary.
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